des56.c 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

/*
 * Fast implementation of the DES, as described in the Federal Register,
 * Vol. 40, No. 52, p. 12134, March 17, 1975.
 *
 * Stuart Levy, Minnesota Supercomputer Center, April 1988.
 * Currently (2007) slevy@ncsa.uiuc.edu
 * NCSA, University of Illinois Urbana-Champaign
 *
 * Calling sequence:
 *
 * typedef unsigned long keysched[32];
 *
 * fsetkey(key, keysched)	/ * Converts a DES key to a "key schedule" * /
 *	unsigned char	key[8];
 *	keysched	*ks;
 *
 * fencrypt(block, decrypt, keysched)	/ * En/decrypts one 64-bit block * /
 *	unsigned char	block[8];	/ * data, en/decrypted in place * /
 *	int		decrypt;	/ * 0=>encrypt, 1=>decrypt * /
 *	keysched	*ks;		/ * key schedule, as set by fsetkey * /
 *
 * Key and data block representation:
 * The 56-bit key (bits 1..64 including "parity" bits 8, 16, 24, ..., 64)
 * and the 64-bit data block (bits 1..64)
 * are each stored in arrays of 8 bytes.
 * Following the NBS numbering, the MSB has the bit number 1, so
 *  key[0] = 128*bit1 + 64*bit2 + ... + 1*bit8, ... through
 *  key[7] = 128*bit57 + 64*bit58 + ... + 1*bit64.
 * In the key, "parity" bits are not checked; their values are ignored.
 *
*/

/*
===============================================================================
License

des56.c is licensed under the terms of the MIT license reproduced below.
This means that des56.c is free software and can be used for both academic
and commercial purposes at absolutely no cost.
===============================================================================
Copyright (C) 1988 Stuart Levy

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
 */


#include "des56.h"


/*
 * Key schedule generation.
 * We begin by pointlessly permuting the 56 useful key bits into
 * two groups of 28 bits called C and D.
 * bK_C and bK_D are indexed by C and D bit numbers, respectively,
 * and give the key bit number (1..64) which should initialize that C/D bit.
 * This is the "permuted choice 1" table.
 */

static tiny bK_C[28] = {
	57, 49, 41, 33, 25, 17,  9,
	 1, 58, 50, 42, 34, 26, 18,
	10,  2, 59, 51, 43, 35, 27,
	19, 11,  3, 60, 52, 44, 36,
};
static tiny bK_D[28] = {
	63, 55, 47, 39, 31, 23, 15,
	 7, 62, 54, 46, 38, 30, 22,
	14,  6, 61, 53, 45, 37, 29,
	21, 13,  5, 28, 20, 12, 4,
};

/*
 * For speed, we invert these, building tables to map groups of
 * key bits into the corresponding C and D bits.
 * We represent C and D each as 28 contiguous bits right-justified in a
 * word, padded on the left with zeros.
 * If key byte `i' is said to contain bits Ki,0 (MSB) Ki,1 ... Ki,7 (LSB)
 * then
 *	wC_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] gives the C bits for Ki,0..3,
 *	wD_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] the corresponding D bits,
 *	wC_K3[i][Ki,4 Ki,5 Ki,6] the C bits for Ki,4..6,
 * and	wD_K3[i][Ki,4 Ki,5 Ki,6] the D bits for Ki,4..6.
 * Ki,7 is ignored since it is the nominal parity bit.
 * We could just use a single table for [i][Ki,0 .. Ki,6] but that
 * would take a lot of storage for such a rarely-used function.
 */

static	word32 wC_K4[8][16], wC_K3[8][8];
static	word32 wD_K4[8][16], wD_K3[8][8];

/*
 * Successive Ci and Di for the sixteen steps in the key schedule are
 * created by independent 28-bit left circular shifts on C and D.
 * The shift count varies with the step number.
 */
static tiny preshift[16] = {
	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};

/*
 * Each step in the key schedule is generated by selecting 48 bits
 * (8 groups of 6 bits) from the appropriately shifted Ci and Di.
 * bCD_KS, indexed by the key schedule bit number, gives the bit number
 * in CD (CD1 = MSB of C, CD28 = LSB of C, CD29 = MSB of D, CD56 = LSB of D)
 * which determines that bit of the key schedule.
 * Note that only C bits (1..28) appear in the first (upper) 24 bits of
 * the key schedule, and D bits (29..56) in the second (lower) 24 bits.
 * This is the "permuted-choice-2" table.
 */

static tiny bCD_KS[48] = {
	14, 17, 11, 24,  1,  5,
	3,  28, 15,  6, 21, 10,
	23, 19, 12,  4, 26,  8,
	16,  7, 27, 20, 13,  2,
	41, 52, 31, 37, 47, 55,
	30, 40, 51, 45, 33, 48,
	44, 49, 39, 56, 34, 53,
	46, 42, 50, 36, 29, 32,
};

/*
 * We invert bCD_KS into a pair of tables which map groups of 4
 * C or D bits into corresponding key schedule bits.
 * We represent each step of the key schedule as 8 groups of 8 bits,
 * with the 6 real bits right-justified in each 8-bit group.
 * hKS_C4[i][C4i+1 .. C4i+4] gives the bits in the high order (first four)
 * key schedule "bytes" which correspond to C bits 4i+1 .. 4i+4.
 * lKS_D4[i][D4i+1 .. D4i+4] gives the appropriate bits in the latter (last 4)
 * key schedule bytes, from the corresponding D bits.
 */

static word32 hKS_C4[7][16];
static word32 lKS_D4[7][16];

/*
 * Encryption/decryption.
 * Before beginning, and after ending, we perform another useless permutation
 * on the bits in the data block.
 *
 * The initial permutation and its inverse, final permutation
 * are too simple to need a table for.	If we break the input I1 .. I64 into
 * 8-bit chunks I0,0 I0,1 ... I0,7 I1,0 I1,1 ... I7,7
 * then the initial permutation sets LR as follows:
 * L = I7,1 I6,1 I5,1 ... I0,1	I7,3 I6,3 ... I0,3  I7,5 ... I0,5  I7,7 ... I0,7
 * and
 * R = I7,0 I6,0 I5,0 ... I0,0	I7,2 I6,2 ... I0,2  I7,4 ... I0,4  I7,6 ... I0,6
 *
 * If we number the bits in the final LR similarly,
 * L = L0,0 L0,1 ... L3,7  R = R0,0 R0,1 ... R3,7
 * then the output is
 * O = R0,7 L0,7 R1,7 L1,7 ... R3,7 L3,7 R0,6 L0,6 ... L3,6 R0,5 ... R3,0 L3,0
 *
 * To speed I => LR shuffling we use an array of 32-bit values indexed by
 * 8-bit input bytes.
 * wL_I8[ 0 I0,1 0 I0,3 0 I0,5 0 I0,7 ] = the corresponding L bits.
 * Other R and L bits are derived from wL_I8 by shifting.
 *
 * To speed LR => O shuffling, an array of 32-bit values indexed by 4-bit lumps:
 * wO_L4[ L0,4 L0,5 L0,6 L0,7 ] = the corresponding high-order 32 O bits.
 */

static word32 wL_I8[0x55 + 1];
static word32 wO_L4[16];

/*
 * Core of encryption/decryption.
 * In each key schedule stage, we:
 *	take 8 overlapping groups of 6 bits each from R
 *	   (the NBS tabulates the bit selections in the E table,
 *	    but it's so simple we just use shifting to get the right bits)
 *	XOR each group with the corresponding bits from the key schedule
 *	Use the resulting 6 bits as an index into the appropriate S table
 *	   (there are 8 such tables, one per group of 6 bits)
 *	Each S entry yields 4 bits.
 *	The 8 groups of 4 bits are catenated into a 32-bit value.
 *	Those 32 bits are permuted according to the P table.
 *	Finally the permuted 32-bit value is XORed with L and becomes
 *	the R value for the next stage, while the previous R becomes the new L.
 *
 * Here, we merge the P permutation with the S tables by making the
 * S entries be 32-bit masks, already suitably permuted.
 * Also, the bits in each six-bit group must be permuted before use as
 * an index into the NBS-tabulated S tables.
 * We rearrange entries in wPS so that natural bit order can be used.
 */

static word32 wPS[8][64];

static tiny P[32] = {
	16,  7, 20, 21,
	29, 12, 28, 17,
	 1, 15, 23, 26,
	 5, 18, 31, 10,
	 2,  8, 24, 14,
	32, 27,  3,  9,
	19, 13, 30,  6,
	22, 11,  4, 25,
};

static tiny S[8][64] = {
     {
	14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,
	 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
	 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,
	15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,
     },

     {
	15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
	 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
	 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
	13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9,
     },

     {
	10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,
	13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,
	13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,
	 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,
     },

     {
	 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,
	13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
	10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
	 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,
     },

     {
	 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
	14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
	 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
	11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,
     },

     {
	12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
	10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
	 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
	 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,
     },

     {
	 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
	13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,
	 1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,
	 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,
     },

     {
	13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,
	 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,
	 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,
	 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11,
     },
};

static void buildtables( void )
{
	register int i, j;
	register word32 v;
	word32 wC_K[64], wD_K[64];
	word32 hKS_C[28], lKS_D[28];
	int Smap[64];
	word32 wP[32];

#if USG
#  define	ZERO(array)	memset((char *)(array), '\0', sizeof(array))
#else
# if BSD
#  define	ZERO(array)	bzero((char *)(array), sizeof(array))
# else 
#  define	ZERO(array)	{ register word32 *p = (word32 *)(array); \
				  i = sizeof(array) / sizeof(*p); \
				  do { *p++ = 0; } while(--i > 0); \
				}
# endif 
#endif 


	/* Invert permuted-choice-1 (key => C,D) */

	ZERO(wC_K);
	ZERO(wD_K);
	v = 1;
	for(j = 28; --j >= 0; ) {
		wC_K[ bK_C[j] - 1 ] = wD_K[ bK_D[j] - 1 ] = v;
		v += v; 	/* (i.e. v <<= 1) */
	}

	for(i = 0; i < 64; i++) {
	    int t = 8 >> (i & 3);
	    for(j = 0; j < 16; j++) {
		if(j & t) {
		    wC_K4[i >> 3][j] |= wC_K[i];
		    wD_K4[i >> 3][j] |= wD_K[i];
		    if(j < 8) {
			wC_K3[i >> 3][j] |= wC_K[i + 3];
			wD_K3[i >> 3][j] |= wD_K[i + 3];
		    }
		}
	    }
	    /* Generate the sequence 0,1,2,3, 8,9,10,11, ..., 56,57,58,59. */
	    if(t == 1) i += 4;
	}

	/* Invert permuted-choice-2 */

	ZERO(hKS_C);
	ZERO(lKS_D);
	v = 1;
	for(i = 24; (i -= 6) >= 0; ) {
	    j = i+5;
	    do {
		hKS_C[ bCD_KS[j] - 1 ] = lKS_D[ bCD_KS[j+24] - 28 - 1 ] = v;
		v += v; 	/* Like v <<= 1 but may be faster */
	    } while(--j >= i);
	    v <<= 2;		/* Keep byte aligned */
	}

	for(i = 0; i < 28; i++) {
	    v = 8 >> (i & 3);
	    for(j = 0; j < 16; j++) {
		if(j & v) {
		    hKS_C4[i >> 2][j] |= hKS_C[i];
		    lKS_D4[i >> 2][j] |= lKS_D[i];
		}
	    }
	}

	/* Initial permutation */

	for(i = 0; i <= 0x55; i++) {
	    v = 0;
	    if(i & 64) v =  (word32) 1 << 24;
	    if(i & 16) v |= (word32) 1 << 16;
	    if(i & 4)  v |= (word32) 1 << 8;
	    if(i & 1)  v |= 1;
	    wL_I8[i] = v;
	}

	/* Final permutation */

	for(i = 0; i < 16; i++) {
	    v = 0;
	    if(i & 1) v = (word32) 1 << 24;
	    if(i & 2) v |= (word32) 1 << 16;
	    if(i & 4) v |= (word32) 1 << 8;
	    if(i & 8) v |= (word32) 1;
	    wO_L4[i] = v;
	}

	/* Funny bit rearrangement on second index into S tables */

	for(i = 0; i < 64; i++) {
		Smap[i] = (i & 0x20) | (i & 1) << 4 | (i & 0x1e) >> 1;
	}

	/* Invert permutation P into mask indexed by R bit number */

	v = 1;
	for(i = 32; --i >= 0; ) {
		wP[ P[i] - 1 ] = v;
		v += v;
	}

	/* Build bit-mask versions of S tables, indexed in natural bit order */

	for(i = 0; i < 8; i++) {
	    for(j = 0; j < 64; j++) {
		int k, t;

		t = S[i][ Smap[j] ];
		for(k = 0; k < 4; k++) {
		    if(t & 8)
			wPS[i][j] |= wP[4*i + k];
		    t += t;
		}
	    }
	}
}


void fsetkey(char key[8], keysched *ks)
{
	register int i;
	register word32 C, D;
	static int built = 0;

	if(!built) {
		buildtables();
		built = 1;
	}

	C = D = 0;
	for(i = 0; i < 8; i++) {
		register int v;

		v = key[i] >> 1;	/* Discard "parity" bit */
		C |= wC_K4[i][(v>>3) & 15] | wC_K3[i][v & 7];
		D |= wD_K4[i][(v>>3) & 15] | wD_K3[i][v & 7];
	}

	/*
	 * C and D now hold the suitably right-justified
	 * 28 permuted key bits each.
	 */
	for(i = 0; i < 16; i++) {
#ifdef CRAY
#define choice2(x, v)  x[6][v&15] | x[5][(v>>4)&15] | x[4][(v>>8)&15] | \
		    x[3][(v>>12)&15] | x[2][(v>>16)&15] | x[1][(v>>20)&15] | \
		    x[0][(v>>24)&15]
#else
		register word32 *ap;

#  define choice2(x, v)  ( \
		    ap = &(x)[0][0], \
		    ap[16*6 + (v&15)] | \
		    ap[16*5 + ((v>>4)&15)]  | ap[16*4 + ((v>>8)&15)]  | \
		    ap[16*3 + ((v>>12)&15)] | ap[16*2 + ((v>>16)&15)] | \
		    ap[16*1 + ((v>>20)&15)] | ap[16*0 + ((v>>24)&15)] )
#endif 


		/* 28-bit left circular shift */
		C <<= preshift[i];
		C = ((C >> 28) & 3) | (C & (((word32)1<<28) - 1));
		ks->KS[i].h = choice2(hKS_C4, C);

		D <<= preshift[i];
		D = ((D >> 28) & 3) | (D & (((word32)1<<28) - 1));
		ks->KS[i].l = choice2(lKS_D4, D);
	}
}

void
fencrypt(char block[8], int decrypt, keysched *ks)
{
	int i;
	register word32 L, R;
	register struct keystage *ksp;
	register word32 *ap;

	/* Initial permutation */

	L = R = 0;
	i = 7;
	ap = wL_I8;
	do {
		register int v;

		v = block[i];	/* Could optimize according to ENDIAN */
		L = ap[v & 0x55] | (L << 1);
		R = ap[(v >> 1) & 0x55] | (R << 1);
	} while(--i >= 0);

	if(decrypt) {
		ksp = &ks->KS[15];
	} else {
		ksp = &ks->KS[0];
	}

#ifdef CRAY
#  define PS(i,j)	wPS[i][j]
#else 
#  define PS(i,j)	ap[64*(i) + (j)]
	ap = &wPS[0][0];
#endif 

	i = 16;
	do {
		register word32 k, tR;

		tR = (R >> 15) | (R << 17);

		k = ksp->h;
		L ^= PS(0, ((tR >> 12) ^ (k >> 24)) & 63)
		   | PS(1, ((tR >> 8) ^ (k >> 16)) & 63)
		   | PS(2, ((tR >> 4) ^ (k >> 8)) & 63)
		   | PS(3, (tR ^ k) & 63);

		k = ksp->l;
		L ^= PS(4, ((R >> 11) ^ (k >> 24)) & 63)
		   | PS(5, ((R >> 7) ^ (k >> 16)) & 63)
		   | PS(6, ((R >> 3) ^ (k >> 8)) & 63)
		   | PS(7, ((tR >> 16) ^ k) & 63);

		tR = L;
		L = R;
		R = tR;


		if(decrypt)
			ksp--;
		else
			ksp++;
	} while(--i > 0);
	{
		register word32 t;

#ifdef CRAY
# define FP(k)	(wO_L4[ (L >> (k)) & 15 ] << 1 | wO_L4[ (R >> (k)) & 15 ])
#else 
# define FP(k)	(ap[ (L >> (k)) & 15 ] << 1 | ap[ (R >> (k)) & 15 ])

		ap = wO_L4;
#endif 

		t = FP(0) | (FP(8) | (FP(16) | (FP(24) << 2)) << 2) << 2;
		R = FP(4) | (FP(12) | (FP(20) | (FP(28) << 2)) << 2) << 2;
		L = t;
	}
	{
		register word32 t;
		register char *bp;

		bp = &block[7];
		t = R;
		*bp = t & 255;
		*--bp = (t >>= 8) & 255;
		*--bp = (t >>= 8) & 255;
		*--bp = (t >> 8) & 255;
		t = L;
		*--bp = t & 255;
		*--bp = (t >>= 8) & 255;
		*--bp = (t >>= 8) & 255;
		*--bp = (t >> 8) & 255;
	}
}