des56.c
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
* Fast implementation of the DES, as described in the Federal Register,
* Vol. 40, No. 52, p. 12134, March 17, 1975.
*
* Stuart Levy, Minnesota Supercomputer Center, April 1988.
* Currently (2007) slevy@ncsa.uiuc.edu
* NCSA, University of Illinois Urbana-Champaign
*
* Calling sequence:
*
* typedef unsigned long keysched[32];
*
* fsetkey(key, keysched) / * Converts a DES key to a "key schedule" * /
* unsigned char key[8];
* keysched *ks;
*
* fencrypt(block, decrypt, keysched) / * En/decrypts one 64-bit block * /
* unsigned char block[8]; / * data, en/decrypted in place * /
* int decrypt; / * 0=>encrypt, 1=>decrypt * /
* keysched *ks; / * key schedule, as set by fsetkey * /
*
* Key and data block representation:
* The 56-bit key (bits 1..64 including "parity" bits 8, 16, 24, ..., 64)
* and the 64-bit data block (bits 1..64)
* are each stored in arrays of 8 bytes.
* Following the NBS numbering, the MSB has the bit number 1, so
* key[0] = 128*bit1 + 64*bit2 + ... + 1*bit8, ... through
* key[7] = 128*bit57 + 64*bit58 + ... + 1*bit64.
* In the key, "parity" bits are not checked; their values are ignored.
*
*/
/*
===============================================================================
License
des56.c is licensed under the terms of the MIT license reproduced below.
This means that des56.c is free software and can be used for both academic
and commercial purposes at absolutely no cost.
===============================================================================
Copyright (C) 1988 Stuart Levy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "des56.h"
/*
* Key schedule generation.
* We begin by pointlessly permuting the 56 useful key bits into
* two groups of 28 bits called C and D.
* bK_C and bK_D are indexed by C and D bit numbers, respectively,
* and give the key bit number (1..64) which should initialize that C/D bit.
* This is the "permuted choice 1" table.
*/
static tiny bK_C[28] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
};
static tiny bK_D[28] = {
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4,
};
/*
* For speed, we invert these, building tables to map groups of
* key bits into the corresponding C and D bits.
* We represent C and D each as 28 contiguous bits right-justified in a
* word, padded on the left with zeros.
* If key byte `i' is said to contain bits Ki,0 (MSB) Ki,1 ... Ki,7 (LSB)
* then
* wC_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] gives the C bits for Ki,0..3,
* wD_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] the corresponding D bits,
* wC_K3[i][Ki,4 Ki,5 Ki,6] the C bits for Ki,4..6,
* and wD_K3[i][Ki,4 Ki,5 Ki,6] the D bits for Ki,4..6.
* Ki,7 is ignored since it is the nominal parity bit.
* We could just use a single table for [i][Ki,0 .. Ki,6] but that
* would take a lot of storage for such a rarely-used function.
*/
static word32 wC_K4[8][16], wC_K3[8][8];
static word32 wD_K4[8][16], wD_K3[8][8];
/*
* Successive Ci and Di for the sixteen steps in the key schedule are
* created by independent 28-bit left circular shifts on C and D.
* The shift count varies with the step number.
*/
static tiny preshift[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};
/*
* Each step in the key schedule is generated by selecting 48 bits
* (8 groups of 6 bits) from the appropriately shifted Ci and Di.
* bCD_KS, indexed by the key schedule bit number, gives the bit number
* in CD (CD1 = MSB of C, CD28 = LSB of C, CD29 = MSB of D, CD56 = LSB of D)
* which determines that bit of the key schedule.
* Note that only C bits (1..28) appear in the first (upper) 24 bits of
* the key schedule, and D bits (29..56) in the second (lower) 24 bits.
* This is the "permuted-choice-2" table.
*/
static tiny bCD_KS[48] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32,
};
/*
* We invert bCD_KS into a pair of tables which map groups of 4
* C or D bits into corresponding key schedule bits.
* We represent each step of the key schedule as 8 groups of 8 bits,
* with the 6 real bits right-justified in each 8-bit group.
* hKS_C4[i][C4i+1 .. C4i+4] gives the bits in the high order (first four)
* key schedule "bytes" which correspond to C bits 4i+1 .. 4i+4.
* lKS_D4[i][D4i+1 .. D4i+4] gives the appropriate bits in the latter (last 4)
* key schedule bytes, from the corresponding D bits.
*/
static word32 hKS_C4[7][16];
static word32 lKS_D4[7][16];
/*
* Encryption/decryption.
* Before beginning, and after ending, we perform another useless permutation
* on the bits in the data block.
*
* The initial permutation and its inverse, final permutation
* are too simple to need a table for. If we break the input I1 .. I64 into
* 8-bit chunks I0,0 I0,1 ... I0,7 I1,0 I1,1 ... I7,7
* then the initial permutation sets LR as follows:
* L = I7,1 I6,1 I5,1 ... I0,1 I7,3 I6,3 ... I0,3 I7,5 ... I0,5 I7,7 ... I0,7
* and
* R = I7,0 I6,0 I5,0 ... I0,0 I7,2 I6,2 ... I0,2 I7,4 ... I0,4 I7,6 ... I0,6
*
* If we number the bits in the final LR similarly,
* L = L0,0 L0,1 ... L3,7 R = R0,0 R0,1 ... R3,7
* then the output is
* O = R0,7 L0,7 R1,7 L1,7 ... R3,7 L3,7 R0,6 L0,6 ... L3,6 R0,5 ... R3,0 L3,0
*
* To speed I => LR shuffling we use an array of 32-bit values indexed by
* 8-bit input bytes.
* wL_I8[ 0 I0,1 0 I0,3 0 I0,5 0 I0,7 ] = the corresponding L bits.
* Other R and L bits are derived from wL_I8 by shifting.
*
* To speed LR => O shuffling, an array of 32-bit values indexed by 4-bit lumps:
* wO_L4[ L0,4 L0,5 L0,6 L0,7 ] = the corresponding high-order 32 O bits.
*/
static word32 wL_I8[0x55 + 1];
static word32 wO_L4[16];
/*
* Core of encryption/decryption.
* In each key schedule stage, we:
* take 8 overlapping groups of 6 bits each from R
* (the NBS tabulates the bit selections in the E table,
* but it's so simple we just use shifting to get the right bits)
* XOR each group with the corresponding bits from the key schedule
* Use the resulting 6 bits as an index into the appropriate S table
* (there are 8 such tables, one per group of 6 bits)
* Each S entry yields 4 bits.
* The 8 groups of 4 bits are catenated into a 32-bit value.
* Those 32 bits are permuted according to the P table.
* Finally the permuted 32-bit value is XORed with L and becomes
* the R value for the next stage, while the previous R becomes the new L.
*
* Here, we merge the P permutation with the S tables by making the
* S entries be 32-bit masks, already suitably permuted.
* Also, the bits in each six-bit group must be permuted before use as
* an index into the NBS-tabulated S tables.
* We rearrange entries in wPS so that natural bit order can be used.
*/
static word32 wPS[8][64];
static tiny P[32] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25,
};
static tiny S[8][64] = {
{
14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,
0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,
15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,
},
{
15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9,
},
{
10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,
13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,
1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,
},
{
7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,
13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,
},
{
2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,
},
{
12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,
},
{
4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,
1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,
6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,
},
{
13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,
1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,
7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,
2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11,
},
};
static void buildtables( void )
{
register int i, j;
register word32 v;
word32 wC_K[64], wD_K[64];
word32 hKS_C[28], lKS_D[28];
int Smap[64];
word32 wP[32];
#if USG
# define ZERO(array) memset((char *)(array), '\0', sizeof(array))
#else
# if BSD
# define ZERO(array) bzero((char *)(array), sizeof(array))
# else
# define ZERO(array) { register word32 *p = (word32 *)(array); \
i = sizeof(array) / sizeof(*p); \
do { *p++ = 0; } while(--i > 0); \
}
# endif
#endif
/* Invert permuted-choice-1 (key => C,D) */
ZERO(wC_K);
ZERO(wD_K);
v = 1;
for(j = 28; --j >= 0; ) {
wC_K[ bK_C[j] - 1 ] = wD_K[ bK_D[j] - 1 ] = v;
v += v; /* (i.e. v <<= 1) */
}
for(i = 0; i < 64; i++) {
int t = 8 >> (i & 3);
for(j = 0; j < 16; j++) {
if(j & t) {
wC_K4[i >> 3][j] |= wC_K[i];
wD_K4[i >> 3][j] |= wD_K[i];
if(j < 8) {
wC_K3[i >> 3][j] |= wC_K[i + 3];
wD_K3[i >> 3][j] |= wD_K[i + 3];
}
}
}
/* Generate the sequence 0,1,2,3, 8,9,10,11, ..., 56,57,58,59. */
if(t == 1) i += 4;
}
/* Invert permuted-choice-2 */
ZERO(hKS_C);
ZERO(lKS_D);
v = 1;
for(i = 24; (i -= 6) >= 0; ) {
j = i+5;
do {
hKS_C[ bCD_KS[j] - 1 ] = lKS_D[ bCD_KS[j+24] - 28 - 1 ] = v;
v += v; /* Like v <<= 1 but may be faster */
} while(--j >= i);
v <<= 2; /* Keep byte aligned */
}
for(i = 0; i < 28; i++) {
v = 8 >> (i & 3);
for(j = 0; j < 16; j++) {
if(j & v) {
hKS_C4[i >> 2][j] |= hKS_C[i];
lKS_D4[i >> 2][j] |= lKS_D[i];
}
}
}
/* Initial permutation */
for(i = 0; i <= 0x55; i++) {
v = 0;
if(i & 64) v = (word32) 1 << 24;
if(i & 16) v |= (word32) 1 << 16;
if(i & 4) v |= (word32) 1 << 8;
if(i & 1) v |= 1;
wL_I8[i] = v;
}
/* Final permutation */
for(i = 0; i < 16; i++) {
v = 0;
if(i & 1) v = (word32) 1 << 24;
if(i & 2) v |= (word32) 1 << 16;
if(i & 4) v |= (word32) 1 << 8;
if(i & 8) v |= (word32) 1;
wO_L4[i] = v;
}
/* Funny bit rearrangement on second index into S tables */
for(i = 0; i < 64; i++) {
Smap[i] = (i & 0x20) | (i & 1) << 4 | (i & 0x1e) >> 1;
}
/* Invert permutation P into mask indexed by R bit number */
v = 1;
for(i = 32; --i >= 0; ) {
wP[ P[i] - 1 ] = v;
v += v;
}
/* Build bit-mask versions of S tables, indexed in natural bit order */
for(i = 0; i < 8; i++) {
for(j = 0; j < 64; j++) {
int k, t;
t = S[i][ Smap[j] ];
for(k = 0; k < 4; k++) {
if(t & 8)
wPS[i][j] |= wP[4*i + k];
t += t;
}
}
}
}
void fsetkey(char key[8], keysched *ks)
{
register int i;
register word32 C, D;
static int built = 0;
if(!built) {
buildtables();
built = 1;
}
C = D = 0;
for(i = 0; i < 8; i++) {
register int v;
v = key[i] >> 1; /* Discard "parity" bit */
C |= wC_K4[i][(v>>3) & 15] | wC_K3[i][v & 7];
D |= wD_K4[i][(v>>3) & 15] | wD_K3[i][v & 7];
}
/*
* C and D now hold the suitably right-justified
* 28 permuted key bits each.
*/
for(i = 0; i < 16; i++) {
#ifdef CRAY
#define choice2(x, v) x[6][v&15] | x[5][(v>>4)&15] | x[4][(v>>8)&15] | \
x[3][(v>>12)&15] | x[2][(v>>16)&15] | x[1][(v>>20)&15] | \
x[0][(v>>24)&15]
#else
register word32 *ap;
# define choice2(x, v) ( \
ap = &(x)[0][0], \
ap[16*6 + (v&15)] | \
ap[16*5 + ((v>>4)&15)] | ap[16*4 + ((v>>8)&15)] | \
ap[16*3 + ((v>>12)&15)] | ap[16*2 + ((v>>16)&15)] | \
ap[16*1 + ((v>>20)&15)] | ap[16*0 + ((v>>24)&15)] )
#endif
/* 28-bit left circular shift */
C <<= preshift[i];
C = ((C >> 28) & 3) | (C & (((word32)1<<28) - 1));
ks->KS[i].h = choice2(hKS_C4, C);
D <<= preshift[i];
D = ((D >> 28) & 3) | (D & (((word32)1<<28) - 1));
ks->KS[i].l = choice2(lKS_D4, D);
}
}
void
fencrypt(char block[8], int decrypt, keysched *ks)
{
int i;
register word32 L, R;
register struct keystage *ksp;
register word32 *ap;
/* Initial permutation */
L = R = 0;
i = 7;
ap = wL_I8;
do {
register int v;
v = block[i]; /* Could optimize according to ENDIAN */
L = ap[v & 0x55] | (L << 1);
R = ap[(v >> 1) & 0x55] | (R << 1);
} while(--i >= 0);
if(decrypt) {
ksp = &ks->KS[15];
} else {
ksp = &ks->KS[0];
}
#ifdef CRAY
# define PS(i,j) wPS[i][j]
#else
# define PS(i,j) ap[64*(i) + (j)]
ap = &wPS[0][0];
#endif
i = 16;
do {
register word32 k, tR;
tR = (R >> 15) | (R << 17);
k = ksp->h;
L ^= PS(0, ((tR >> 12) ^ (k >> 24)) & 63)
| PS(1, ((tR >> 8) ^ (k >> 16)) & 63)
| PS(2, ((tR >> 4) ^ (k >> 8)) & 63)
| PS(3, (tR ^ k) & 63);
k = ksp->l;
L ^= PS(4, ((R >> 11) ^ (k >> 24)) & 63)
| PS(5, ((R >> 7) ^ (k >> 16)) & 63)
| PS(6, ((R >> 3) ^ (k >> 8)) & 63)
| PS(7, ((tR >> 16) ^ k) & 63);
tR = L;
L = R;
R = tR;
if(decrypt)
ksp--;
else
ksp++;
} while(--i > 0);
{
register word32 t;
#ifdef CRAY
# define FP(k) (wO_L4[ (L >> (k)) & 15 ] << 1 | wO_L4[ (R >> (k)) & 15 ])
#else
# define FP(k) (ap[ (L >> (k)) & 15 ] << 1 | ap[ (R >> (k)) & 15 ])
ap = wO_L4;
#endif
t = FP(0) | (FP(8) | (FP(16) | (FP(24) << 2)) << 2) << 2;
R = FP(4) | (FP(12) | (FP(20) | (FP(28) << 2)) << 2) << 2;
L = t;
}
{
register word32 t;
register char *bp;
bp = &block[7];
t = R;
*bp = t & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >> 8) & 255;
t = L;
*--bp = t & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >> 8) & 255;
}
}