Skip to content
Snippets Groups Projects
Commit de2361e7 authored by dg's avatar dg
Browse files

plop

git-svn-id: http://svn.net-core.org/repos/t-engine4@2143 51575b47-30f0-44d4-a5cc-537603b46e54
parent 180052a2
No related branches found
No related tags found
No related merge requests found
/*
* Fast implementation of the DES, as described in the Federal Register,
* Vol. 40, No. 52, p. 12134, March 17, 1975.
*
* Stuart Levy, Minnesota Supercomputer Center, April 1988.
* Currently (2007) slevy@ncsa.uiuc.edu
* NCSA, University of Illinois Urbana-Champaign
*
* Calling sequence:
*
* typedef unsigned long keysched[32];
*
* fsetkey(key, keysched) / * Converts a DES key to a "key schedule" * /
* unsigned char key[8];
* keysched *ks;
*
* fencrypt(block, decrypt, keysched) / * En/decrypts one 64-bit block * /
* unsigned char block[8]; / * data, en/decrypted in place * /
* int decrypt; / * 0=>encrypt, 1=>decrypt * /
* keysched *ks; / * key schedule, as set by fsetkey * /
*
* Key and data block representation:
* The 56-bit key (bits 1..64 including "parity" bits 8, 16, 24, ..., 64)
* and the 64-bit data block (bits 1..64)
* are each stored in arrays of 8 bytes.
* Following the NBS numbering, the MSB has the bit number 1, so
* key[0] = 128*bit1 + 64*bit2 + ... + 1*bit8, ... through
* key[7] = 128*bit57 + 64*bit58 + ... + 1*bit64.
* In the key, "parity" bits are not checked; their values are ignored.
*
*/
/*
===============================================================================
License
des56.c is licensed under the terms of the MIT license reproduced below.
This means that des56.c is free software and can be used for both academic
and commercial purposes at absolutely no cost.
===============================================================================
Copyright (C) 1988 Stuart Levy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "des56.h"
/*
* Key schedule generation.
* We begin by pointlessly permuting the 56 useful key bits into
* two groups of 28 bits called C and D.
* bK_C and bK_D are indexed by C and D bit numbers, respectively,
* and give the key bit number (1..64) which should initialize that C/D bit.
* This is the "permuted choice 1" table.
*/
static tiny bK_C[28] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
};
static tiny bK_D[28] = {
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4,
};
/*
* For speed, we invert these, building tables to map groups of
* key bits into the corresponding C and D bits.
* We represent C and D each as 28 contiguous bits right-justified in a
* word, padded on the left with zeros.
* If key byte `i' is said to contain bits Ki,0 (MSB) Ki,1 ... Ki,7 (LSB)
* then
* wC_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] gives the C bits for Ki,0..3,
* wD_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] the corresponding D bits,
* wC_K3[i][Ki,4 Ki,5 Ki,6] the C bits for Ki,4..6,
* and wD_K3[i][Ki,4 Ki,5 Ki,6] the D bits for Ki,4..6.
* Ki,7 is ignored since it is the nominal parity bit.
* We could just use a single table for [i][Ki,0 .. Ki,6] but that
* would take a lot of storage for such a rarely-used function.
*/
static word32 wC_K4[8][16], wC_K3[8][8];
static word32 wD_K4[8][16], wD_K3[8][8];
/*
* Successive Ci and Di for the sixteen steps in the key schedule are
* created by independent 28-bit left circular shifts on C and D.
* The shift count varies with the step number.
*/
static tiny preshift[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};
/*
* Each step in the key schedule is generated by selecting 48 bits
* (8 groups of 6 bits) from the appropriately shifted Ci and Di.
* bCD_KS, indexed by the key schedule bit number, gives the bit number
* in CD (CD1 = MSB of C, CD28 = LSB of C, CD29 = MSB of D, CD56 = LSB of D)
* which determines that bit of the key schedule.
* Note that only C bits (1..28) appear in the first (upper) 24 bits of
* the key schedule, and D bits (29..56) in the second (lower) 24 bits.
* This is the "permuted-choice-2" table.
*/
static tiny bCD_KS[48] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32,
};
/*
* We invert bCD_KS into a pair of tables which map groups of 4
* C or D bits into corresponding key schedule bits.
* We represent each step of the key schedule as 8 groups of 8 bits,
* with the 6 real bits right-justified in each 8-bit group.
* hKS_C4[i][C4i+1 .. C4i+4] gives the bits in the high order (first four)
* key schedule "bytes" which correspond to C bits 4i+1 .. 4i+4.
* lKS_D4[i][D4i+1 .. D4i+4] gives the appropriate bits in the latter (last 4)
* key schedule bytes, from the corresponding D bits.
*/
static word32 hKS_C4[7][16];
static word32 lKS_D4[7][16];
/*
* Encryption/decryption.
* Before beginning, and after ending, we perform another useless permutation
* on the bits in the data block.
*
* The initial permutation and its inverse, final permutation
* are too simple to need a table for. If we break the input I1 .. I64 into
* 8-bit chunks I0,0 I0,1 ... I0,7 I1,0 I1,1 ... I7,7
* then the initial permutation sets LR as follows:
* L = I7,1 I6,1 I5,1 ... I0,1 I7,3 I6,3 ... I0,3 I7,5 ... I0,5 I7,7 ... I0,7
* and
* R = I7,0 I6,0 I5,0 ... I0,0 I7,2 I6,2 ... I0,2 I7,4 ... I0,4 I7,6 ... I0,6
*
* If we number the bits in the final LR similarly,
* L = L0,0 L0,1 ... L3,7 R = R0,0 R0,1 ... R3,7
* then the output is
* O = R0,7 L0,7 R1,7 L1,7 ... R3,7 L3,7 R0,6 L0,6 ... L3,6 R0,5 ... R3,0 L3,0
*
* To speed I => LR shuffling we use an array of 32-bit values indexed by
* 8-bit input bytes.
* wL_I8[ 0 I0,1 0 I0,3 0 I0,5 0 I0,7 ] = the corresponding L bits.
* Other R and L bits are derived from wL_I8 by shifting.
*
* To speed LR => O shuffling, an array of 32-bit values indexed by 4-bit lumps:
* wO_L4[ L0,4 L0,5 L0,6 L0,7 ] = the corresponding high-order 32 O bits.
*/
static word32 wL_I8[0x55 + 1];
static word32 wO_L4[16];
/*
* Core of encryption/decryption.
* In each key schedule stage, we:
* take 8 overlapping groups of 6 bits each from R
* (the NBS tabulates the bit selections in the E table,
* but it's so simple we just use shifting to get the right bits)
* XOR each group with the corresponding bits from the key schedule
* Use the resulting 6 bits as an index into the appropriate S table
* (there are 8 such tables, one per group of 6 bits)
* Each S entry yields 4 bits.
* The 8 groups of 4 bits are catenated into a 32-bit value.
* Those 32 bits are permuted according to the P table.
* Finally the permuted 32-bit value is XORed with L and becomes
* the R value for the next stage, while the previous R becomes the new L.
*
* Here, we merge the P permutation with the S tables by making the
* S entries be 32-bit masks, already suitably permuted.
* Also, the bits in each six-bit group must be permuted before use as
* an index into the NBS-tabulated S tables.
* We rearrange entries in wPS so that natural bit order can be used.
*/
static word32 wPS[8][64];
static tiny P[32] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25,
};
static tiny S[8][64] = {
{
14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,
0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,
4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,
15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,
},
{
15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,
3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,
0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,
13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9,
},
{
10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,
13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,
1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,
},
{
7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,
13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,
10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,
3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,
},
{
2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,
14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,
4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,
11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,
},
{
12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,
10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,
9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,
4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,
},
{
4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,
13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,
1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,
6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,
},
{
13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,
1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,
7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,
2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11,
},
};
static void buildtables( void )
{
register int i, j;
register word32 v;
word32 wC_K[64], wD_K[64];
word32 hKS_C[28], lKS_D[28];
int Smap[64];
word32 wP[32];
#if USG
# define ZERO(array) memset((char *)(array), '\0', sizeof(array))
#else
# if BSD
# define ZERO(array) bzero((char *)(array), sizeof(array))
# else
# define ZERO(array) { register word32 *p = (word32 *)(array); \
i = sizeof(array) / sizeof(*p); \
do { *p++ = 0; } while(--i > 0); \
}
# endif
#endif
/* Invert permuted-choice-1 (key => C,D) */
ZERO(wC_K);
ZERO(wD_K);
v = 1;
for(j = 28; --j >= 0; ) {
wC_K[ bK_C[j] - 1 ] = wD_K[ bK_D[j] - 1 ] = v;
v += v; /* (i.e. v <<= 1) */
}
for(i = 0; i < 64; i++) {
int t = 8 >> (i & 3);
for(j = 0; j < 16; j++) {
if(j & t) {
wC_K4[i >> 3][j] |= wC_K[i];
wD_K4[i >> 3][j] |= wD_K[i];
if(j < 8) {
wC_K3[i >> 3][j] |= wC_K[i + 3];
wD_K3[i >> 3][j] |= wD_K[i + 3];
}
}
}
/* Generate the sequence 0,1,2,3, 8,9,10,11, ..., 56,57,58,59. */
if(t == 1) i += 4;
}
/* Invert permuted-choice-2 */
ZERO(hKS_C);
ZERO(lKS_D);
v = 1;
for(i = 24; (i -= 6) >= 0; ) {
j = i+5;
do {
hKS_C[ bCD_KS[j] - 1 ] = lKS_D[ bCD_KS[j+24] - 28 - 1 ] = v;
v += v; /* Like v <<= 1 but may be faster */
} while(--j >= i);
v <<= 2; /* Keep byte aligned */
}
for(i = 0; i < 28; i++) {
v = 8 >> (i & 3);
for(j = 0; j < 16; j++) {
if(j & v) {
hKS_C4[i >> 2][j] |= hKS_C[i];
lKS_D4[i >> 2][j] |= lKS_D[i];
}
}
}
/* Initial permutation */
for(i = 0; i <= 0x55; i++) {
v = 0;
if(i & 64) v = (word32) 1 << 24;
if(i & 16) v |= (word32) 1 << 16;
if(i & 4) v |= (word32) 1 << 8;
if(i & 1) v |= 1;
wL_I8[i] = v;
}
/* Final permutation */
for(i = 0; i < 16; i++) {
v = 0;
if(i & 1) v = (word32) 1 << 24;
if(i & 2) v |= (word32) 1 << 16;
if(i & 4) v |= (word32) 1 << 8;
if(i & 8) v |= (word32) 1;
wO_L4[i] = v;
}
/* Funny bit rearrangement on second index into S tables */
for(i = 0; i < 64; i++) {
Smap[i] = (i & 0x20) | (i & 1) << 4 | (i & 0x1e) >> 1;
}
/* Invert permutation P into mask indexed by R bit number */
v = 1;
for(i = 32; --i >= 0; ) {
wP[ P[i] - 1 ] = v;
v += v;
}
/* Build bit-mask versions of S tables, indexed in natural bit order */
for(i = 0; i < 8; i++) {
for(j = 0; j < 64; j++) {
int k, t;
t = S[i][ Smap[j] ];
for(k = 0; k < 4; k++) {
if(t & 8)
wPS[i][j] |= wP[4*i + k];
t += t;
}
}
}
}
void fsetkey(char key[8], keysched *ks)
{
register int i;
register word32 C, D;
static int built = 0;
if(!built) {
buildtables();
built = 1;
}
C = D = 0;
for(i = 0; i < 8; i++) {
register int v;
v = key[i] >> 1; /* Discard "parity" bit */
C |= wC_K4[i][(v>>3) & 15] | wC_K3[i][v & 7];
D |= wD_K4[i][(v>>3) & 15] | wD_K3[i][v & 7];
}
/*
* C and D now hold the suitably right-justified
* 28 permuted key bits each.
*/
for(i = 0; i < 16; i++) {
#ifdef CRAY
#define choice2(x, v) x[6][v&15] | x[5][(v>>4)&15] | x[4][(v>>8)&15] | \
x[3][(v>>12)&15] | x[2][(v>>16)&15] | x[1][(v>>20)&15] | \
x[0][(v>>24)&15]
#else
register word32 *ap;
# define choice2(x, v) ( \
ap = &(x)[0][0], \
ap[16*6 + (v&15)] | \
ap[16*5 + ((v>>4)&15)] | ap[16*4 + ((v>>8)&15)] | \
ap[16*3 + ((v>>12)&15)] | ap[16*2 + ((v>>16)&15)] | \
ap[16*1 + ((v>>20)&15)] | ap[16*0 + ((v>>24)&15)] )
#endif
/* 28-bit left circular shift */
C <<= preshift[i];
C = ((C >> 28) & 3) | (C & (((word32)1<<28) - 1));
ks->KS[i].h = choice2(hKS_C4, C);
D <<= preshift[i];
D = ((D >> 28) & 3) | (D & (((word32)1<<28) - 1));
ks->KS[i].l = choice2(lKS_D4, D);
}
}
void
fencrypt(char block[8], int decrypt, keysched *ks)
{
int i;
register word32 L, R;
register struct keystage *ksp;
register word32 *ap;
/* Initial permutation */
L = R = 0;
i = 7;
ap = wL_I8;
do {
register int v;
v = block[i]; /* Could optimize according to ENDIAN */
L = ap[v & 0x55] | (L << 1);
R = ap[(v >> 1) & 0x55] | (R << 1);
} while(--i >= 0);
if(decrypt) {
ksp = &ks->KS[15];
} else {
ksp = &ks->KS[0];
}
#ifdef CRAY
# define PS(i,j) wPS[i][j]
#else
# define PS(i,j) ap[64*(i) + (j)]
ap = &wPS[0][0];
#endif
i = 16;
do {
register word32 k, tR;
tR = (R >> 15) | (R << 17);
k = ksp->h;
L ^= PS(0, ((tR >> 12) ^ (k >> 24)) & 63)
| PS(1, ((tR >> 8) ^ (k >> 16)) & 63)
| PS(2, ((tR >> 4) ^ (k >> 8)) & 63)
| PS(3, (tR ^ k) & 63);
k = ksp->l;
L ^= PS(4, ((R >> 11) ^ (k >> 24)) & 63)
| PS(5, ((R >> 7) ^ (k >> 16)) & 63)
| PS(6, ((R >> 3) ^ (k >> 8)) & 63)
| PS(7, ((tR >> 16) ^ k) & 63);
tR = L;
L = R;
R = tR;
if(decrypt)
ksp--;
else
ksp++;
} while(--i > 0);
{
register word32 t;
#ifdef CRAY
# define FP(k) (wO_L4[ (L >> (k)) & 15 ] << 1 | wO_L4[ (R >> (k)) & 15 ])
#else
# define FP(k) (ap[ (L >> (k)) & 15 ] << 1 | ap[ (R >> (k)) & 15 ])
ap = wO_L4;
#endif
t = FP(0) | (FP(8) | (FP(16) | (FP(24) << 2)) << 2) << 2;
R = FP(4) | (FP(12) | (FP(20) | (FP(28) << 2)) << 2) << 2;
L = t;
}
{
register word32 t;
register char *bp;
bp = &block[7];
t = R;
*bp = t & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >> 8) & 255;
t = L;
*--bp = t & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >>= 8) & 255;
*--bp = (t >> 8) & 255;
}
}
#ifndef DES56_H
#define DES56_H 1
/*
* Fast implementation of the DES, as described in the Federal Register,
* Vol. 40, No. 52, p. 12134, March 17, 1975.
*
* Stuart Levy, Minnesota Supercomputer Center, April 1988.
* Currently (2007) slevy@ncsa.uiuc.edu
* NCSA, University of Illinois Urbana-Champaign
*
* Calling sequence:
*
* typedef unsigned long keysched[32];
*
* fsetkey(key, keysched) / * Converts a DES key to a "key schedule" * /
* unsigned char key[8];
* keysched *ks;
*
* fencrypt(block, decrypt, keysched) / * En/decrypts one 64-bit block * /
* unsigned char block[8]; / * data, en/decrypted in place * /
* int decrypt; / * 0=>encrypt, 1=>decrypt * /
* keysched *ks; / * key schedule, as set by fsetkey * /
*
* Key and data block representation:
* The 56-bit key (bits 1..64 including "parity" bits 8, 16, 24, ..., 64)
* and the 64-bit data block (bits 1..64)
* are each stored in arrays of 8 bytes.
* Following the NBS numbering, the MSB has the bit number 1, so
* key[0] = 128*bit1 + 64*bit2 + ... + 1*bit8, ... through
* key[7] = 128*bit57 + 64*bit58 + ... + 1*bit64.
* In the key, "parity" bits are not checked; their values are ignored.
*
*/
/*
===============================================================================
License
des56.c is licensed under the terms of the MIT license reproduced below.
This means that des56.c is free software and can be used for both academic
and commercial purposes at absolutely no cost.
===============================================================================
Copyright (C) 1988 Stuart Levy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
typedef unsigned long word32;
typedef unsigned char tiny;
typedef struct keysched {
struct keystage {
word32 h, l;
} KS[16];
} keysched;
extern void fsetkey(char key[8], keysched *ks);
extern void fencrypt(char block[8], int decrypt, keysched *ks);
#endif /*DES56_H*/
#include <stdlib.h>
#include <string.h>
#include "des56.h"
#include "lua.h"
#include "lauxlib.h"
#include "ldes56.h"
static int des56_decrypt( lua_State *L )
{
char* decypheredText;
keysched KS;
int rel_index, abs_index;
size_t cypherlen;
const char *cypheredText =
luaL_checklstring( L, 1, &cypherlen );
const char *key = luaL_optstring( L, 2, NULL );
int padinfo;
padinfo = cypheredText[cypherlen-1];
cypherlen--;
/* Aloca array */
decypheredText =
(char *) malloc( (cypherlen+1) * sizeof(char));
if(decypheredText == NULL) {
lua_pushstring(L, "Error decrypting file. Not enough memory.");
lua_error(L);
}
/* Inicia decifragem */
if (key && strlen(key) >= 8)
{
char k[8];
int i;
for (i=0; i<8; i++)
k[i] = (unsigned char)key[i];
fsetkey(k, &KS);
} else {
lua_pushstring(L, "Error decrypting file. Invalid key.");
lua_error(L);
}
rel_index = 0;
abs_index = 0;
while (abs_index < (int) cypherlen)
{
decypheredText[abs_index] = cypheredText[abs_index];
abs_index++;
rel_index++;
if( rel_index == 8 )
{
rel_index = 0;
fencrypt(&(decypheredText[abs_index - 8]), 1, &KS);
}
}
decypheredText[abs_index] = 0;
lua_pushlstring(L, decypheredText, (abs_index-padinfo));
free( decypheredText );
return 1;
}
static int des56_crypt( lua_State *L )
{
char *cypheredText;
keysched KS;
int rel_index, pad, abs_index;
size_t plainlen;
const char *plainText = luaL_checklstring( L, 1, &plainlen );
const char *key = luaL_optstring( L, 2, NULL );
cypheredText = (char *) malloc( (plainlen+8) * sizeof(char));
if(cypheredText == NULL) {
lua_pushstring(L, "Error encrypting file. Not enough memory.");
lua_error(L);
}
if (key && strlen(key) >= 8)
{
char k[8];
int i;
for (i=0; i<8; i++)
k[i] = (unsigned char)key[i];
fsetkey(k, &KS);
} else {
lua_pushstring(L, "Error encrypting file. Invalid key.");
lua_error(L);
}
rel_index = 0;
abs_index = 0;
while (abs_index < (int) plainlen) {
cypheredText[abs_index] = plainText[abs_index];
abs_index++;
rel_index++;
if( rel_index == 8 ) {
rel_index = 0;
fencrypt(&(cypheredText[abs_index - 8]), 0, &KS);
}
}
pad = 0;
if(rel_index != 0) { /* Pads remaining bytes with zeroes */
while(rel_index < 8)
{
pad++;
cypheredText[abs_index++] = 0;
rel_index++;
}
fencrypt(&(cypheredText[abs_index - 8]), 0, &KS);
}
cypheredText[abs_index] = pad;
lua_pushlstring( L, cypheredText, abs_index+1 );
free( cypheredText );
return 1;
}
/*
** Assumes the table is on top of the stack.
*/
static void set_info (lua_State *L) {
lua_pushliteral (L, "_COPYRIGHT");
lua_pushliteral (L, "Copyright (C) 2007 PUC-Rio");
lua_settable (L, -3);
lua_pushliteral (L, "_DESCRIPTION");
lua_pushliteral (L, "DES 56 cryptographic facilities for Lua");
lua_settable (L, -3);
lua_pushliteral (L, "_VERSION");
lua_pushliteral (L, "DES56 1.1.2");
lua_settable (L, -3);
}
static const struct luaL_reg des56lib[] = {
{"crypt", des56_crypt},
{"decrypt", des56_decrypt},
{NULL, NULL},
};
int luaopen_des56 (lua_State *L) {
luaL_openlib (L, "des56", des56lib, 0);
set_info (L);
return 1;
}
int luaopen_des56 (lua_State *L);
/**
* $Id: md5.c,v 1.2 2008/03/24 20:59:12 mascarenhas Exp $
* Hash function MD5
* @author Marcela Ozorio Suarez, Roberto I.
*/
#include <string.h>
#include "md5.h"
#define WORD 32
#define MASK 0xFFFFFFFF
#if __STDC_VERSION__ >= 199901L
#include <stdint.h>
typedef uint32_t WORD32;
#else
typedef unsigned int WORD32;
#endif
/**
* md5 hash function.
* @param message: aribtary string.
* @param len: message length.
* @param output: buffer to receive the hash value. Its size must be
* (at least) HASHSIZE.
*/
void md5 (const char *message, long len, char *output);
/*
** Realiza a rotacao no sentido horario dos bits da variavel 'D' do tipo WORD32.
** Os bits sao deslocados de 'num' posicoes
*/
#define rotate(D, num) (D<<num) | (D>>(WORD-num))
/*Macros que definem operacoes relizadas pelo algoritmo md5 */
#define F(x, y, z) (((x) & (y)) | ((~(x)) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~(z))))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~(z))))
/*vetor de numeros utilizados pelo algoritmo md5 para embaralhar bits */
static const WORD32 T[64]={
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
static void word32tobytes (const WORD32 *input, char *output) {
int j = 0;
while (j<4*4) {
WORD32 v = *input++;
output[j++] = (char)(v & 0xff); v >>= 8;
output[j++] = (char)(v & 0xff); v >>= 8;
output[j++] = (char)(v & 0xff); v >>= 8;
output[j++] = (char)(v & 0xff);
}
}
static void inic_digest(WORD32 *d) {
d[0] = 0x67452301;
d[1] = 0xEFCDAB89;
d[2] = 0x98BADCFE;
d[3] = 0x10325476;
}
/*funcao que implemeta os quatro passos principais do algoritmo MD5 */
static void digest(const WORD32 *m, WORD32 *d) {
int j;
/*MD5 PASSO1 */
for (j=0; j<4*4; j+=4) {
d[0] = d[0]+ F(d[1], d[2], d[3])+ m[j] + T[j]; d[0]=rotate(d[0], 7);
d[0]+=d[1];
d[3] = d[3]+ F(d[0], d[1], d[2])+ m[(j)+1] + T[j+1]; d[3]=rotate(d[3], 12);
d[3]+=d[0];
d[2] = d[2]+ F(d[3], d[0], d[1])+ m[(j)+2] + T[j+2]; d[2]=rotate(d[2], 17);
d[2]+=d[3];
d[1] = d[1]+ F(d[2], d[3], d[0])+ m[(j)+3] + T[j+3]; d[1]=rotate(d[1], 22);
d[1]+=d[2];
}
/*MD5 PASSO2 */
for (j=0; j<4*4; j+=4) {
d[0] = d[0]+ G(d[1], d[2], d[3])+ m[(5*j+1)&0x0f] + T[(j-1)+17];
d[0] = rotate(d[0],5);
d[0]+=d[1];
d[3] = d[3]+ G(d[0], d[1], d[2])+ m[((5*(j+1)+1)&0x0f)] + T[(j+0)+17];
d[3] = rotate(d[3], 9);
d[3]+=d[0];
d[2] = d[2]+ G(d[3], d[0], d[1])+ m[((5*(j+2)+1)&0x0f)] + T[(j+1)+17];
d[2] = rotate(d[2], 14);
d[2]+=d[3];
d[1] = d[1]+ G(d[2], d[3], d[0])+ m[((5*(j+3)+1)&0x0f)] + T[(j+2)+17];
d[1] = rotate(d[1], 20);
d[1]+=d[2];
}
/*MD5 PASSO3 */
for (j=0; j<4*4; j+=4) {
d[0] = d[0]+ H(d[1], d[2], d[3])+ m[(3*j+5)&0x0f] + T[(j-1)+33];
d[0] = rotate(d[0], 4);
d[0]+=d[1];
d[3] = d[3]+ H(d[0], d[1], d[2])+ m[(3*(j+1)+5)&0x0f] + T[(j+0)+33];
d[3] = rotate(d[3], 11);
d[3]+=d[0];
d[2] = d[2]+ H(d[3], d[0], d[1])+ m[(3*(j+2)+5)&0x0f] + T[(j+1)+33];
d[2] = rotate(d[2], 16);
d[2]+=d[3];
d[1] = d[1]+ H(d[2], d[3], d[0])+ m[(3*(j+3)+5)&0x0f] + T[(j+2)+33];
d[1] = rotate(d[1], 23);
d[1]+=d[2];
}
/*MD5 PASSO4 */
for (j=0; j<4*4; j+=4) {
d[0] = d[0]+ I(d[1], d[2], d[3])+ m[(7*j)&0x0f] + T[(j-1)+49];
d[0] = rotate(d[0], 6);
d[0]+=d[1];
d[3] = d[3]+ I(d[0], d[1], d[2])+ m[(7*(j+1))&0x0f] + T[(j+0)+49];
d[3] = rotate(d[3], 10);
d[3]+=d[0];
d[2] = d[2]+ I(d[3], d[0], d[1])+ m[(7*(j+2))&0x0f] + T[(j+1)+49];
d[2] = rotate(d[2], 15);
d[2]+=d[3];
d[1] = d[1]+ I(d[2], d[3], d[0])+ m[(7*(j+3))&0x0f] + T[(j+2)+49];
d[1] = rotate(d[1], 21);
d[1]+=d[2];
}
}
static void bytestoword32 (WORD32 *x, const char *pt) {
int i;
for (i=0; i<16; i++) {
int j=i*4;
x[i] = (((WORD32)(unsigned char)pt[j+3] << 8 |
(WORD32)(unsigned char)pt[j+2]) << 8 |
(WORD32)(unsigned char)pt[j+1]) << 8 |
(WORD32)(unsigned char)pt[j];
}
}
static void put_length(WORD32 *x, long len) {
/* in bits! */
x[14] = (WORD32)((len<<3) & MASK);
x[15] = (WORD32)(len>>(32-3) & 0x7);
}
/*
** returned status:
* 0 - normal message (full 64 bytes)
* 1 - enough room for 0x80, but not for message length (two 4-byte words)
* 2 - enough room for 0x80 plus message length (at least 9 bytes free)
*/
static int converte (WORD32 *x, const char *pt, int num, int old_status) {
int new_status = 0;
char buff[64];
if (num<64) {
memcpy(buff, pt, num); /* to avoid changing original string */
memset(buff+num, 0, 64-num);
if (old_status == 0)
buff[num] = '\200';
new_status = 1;
pt = buff;
}
bytestoword32(x, pt);
if (num <= (64 - 9))
new_status = 2;
return new_status;
}
void md5 (const char *message, long len, char *output) {
WORD32 d[4];
int status = 0;
long i = 0;
inic_digest(d);
while (status != 2) {
WORD32 d_old[4];
WORD32 wbuff[16];
int numbytes = (len-i >= 64) ? 64 : len-i;
/*salva os valores do vetor digest*/
d_old[0]=d[0]; d_old[1]=d[1]; d_old[2]=d[2]; d_old[3]=d[3];
status = converte(wbuff, message+i, numbytes, status);
if (status == 2) put_length(wbuff, len);
digest(wbuff, d);
d[0]+=d_old[0]; d[1]+=d_old[1]; d[2]+=d_old[2]; d[3]+=d_old[3];
i += numbytes;
}
word32tobytes(d, output);
}
/**
* $Id: md5.h,v 1.2 2006/03/03 15:04:49 tomas Exp $
* Cryptographic module for Lua.
* @author Roberto Ierusalimschy
*/
#ifndef md5_h
#define md5_h
#include <lua.h>
#define HASHSIZE 16
void md5 (const char *message, long len, char *output);
int luaopen_md5_core (lua_State *L);
#endif
/**
* $Id: md5lib.c,v 1.10 2008/05/12 20:51:27 carregal Exp $
* Cryptographic and Hash functions for Lua
* @author Roberto Ierusalimschy
*/
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <lua.h>
#include <lauxlib.h>
#if ! defined (LUA_VERSION_NUM) || LUA_VERSION_NUM < 501
#include "compat-5.1.h"
#endif
#include "md5.h"
/**
* Hash function. Returns a hash for a given string.
* @param message: arbitrary binary string.
* @return A 128-bit hash string.
*/
static int lmd5 (lua_State *L) {
char buff[16];
size_t l;
const char *message = luaL_checklstring(L, 1, &l);
md5(message, l, buff);
lua_pushlstring(L, buff, 16L);
return 1;
}
/**
* X-Or. Does a bit-a-bit exclusive-or of two strings.
* @param s1: arbitrary binary string.
* @param s2: arbitrary binary string with same length as s1.
* @return a binary string with same length as s1 and s2,
* where each bit is the exclusive-or of the corresponding bits in s1-s2.
*/
static int ex_or (lua_State *L) {
size_t l1, l2;
const char *s1 = luaL_checklstring(L, 1, &l1);
const char *s2 = luaL_checklstring(L, 2, &l2);
luaL_Buffer b;
luaL_argcheck( L, l1 == l2, 2, "lengths must be equal" );
luaL_buffinit(L, &b);
while (l1--) luaL_putchar(&b, (*s1++)^(*s2++));
luaL_pushresult(&b);
return 1;
}
static void checkseed (lua_State *L) {
if (lua_isnone(L, 3)) { /* no seed? */
time_t tm = time(NULL); /* for `random' seed */
lua_pushlstring(L, (char *)&tm, sizeof(tm));
}
}
#define MAXKEY 256
#define BLOCKSIZE 16
static int initblock (lua_State *L, const char *seed, int lseed, char *block) {
size_t lkey;
const char *key = luaL_checklstring(L, 2, &lkey);
if (lkey > MAXKEY)
luaL_error(L, "key too long (> %d)", MAXKEY);
memset(block, 0, BLOCKSIZE);
memcpy(block, seed, lseed);
memcpy(block+BLOCKSIZE, key, lkey);
return (int)lkey+BLOCKSIZE;
}
static void codestream (lua_State *L, const char *msg, size_t lmsg,
char *block, int lblock) {
luaL_Buffer b;
luaL_buffinit(L, &b);
while (lmsg > 0) {
char code[BLOCKSIZE];
int i;
md5(block, lblock, code);
for (i=0; i<BLOCKSIZE && lmsg > 0; i++, lmsg--)
code[i] ^= *msg++;
luaL_addlstring(&b, code, i);
memcpy(block, code, i); /* update seed */
}
luaL_pushresult(&b);
}
static void decodestream (lua_State *L, const char *cypher, size_t lcypher,
char *block, int lblock) {
luaL_Buffer b;
luaL_buffinit(L, &b);
while (lcypher > 0) {
char code[BLOCKSIZE];
int i;
md5(block, lblock, code); /* update seed */
for (i=0; i<BLOCKSIZE && lcypher > 0; i++, lcypher--)
code[i] ^= *cypher++;
luaL_addlstring(&b, code, i);
memcpy(block, cypher-i, i);
}
luaL_pushresult(&b);
}
/**
* Encrypts a string. Uses the hash function md5 in CFB (Cipher-feedback
* mode).
* @param message: arbitrary binary string to be encrypted.
* @param key: arbitrary binary string to be used as a key.
* @param [seed]: optional arbitrary binary string to be used as a seed.
* if no seed is provided, the function uses the result of
* <code>time()</code> as a seed.
* @return The cyphertext (as a binary string).
*/
static int crypt (lua_State *L) {
size_t lmsg;
const char *msg = luaL_checklstring(L, 1, &lmsg);
size_t lseed;
const char *seed;
int lblock;
char block[BLOCKSIZE+MAXKEY];
checkseed(L);
seed = luaL_checklstring(L, 3, &lseed);
if (lseed > BLOCKSIZE)
luaL_error(L, "seed too long (> %d)", BLOCKSIZE);
/* put seed and seed length at the beginning of result */
block[0] = (char)lseed;
memcpy(block+1, seed, lseed);
lua_pushlstring(L, block, lseed+1); /* to concat with result */
lblock = initblock(L, seed, lseed, block);
codestream(L, msg, lmsg, block, lblock);
lua_concat(L, 2);
return 1;
}
/**
* Decrypts a string. For any message, key, and seed, we have that
* <code>decrypt(crypt(msg, key, seed), key) == msg</code>.
* @param cyphertext: message to be decrypted (this must be the result of
a previous call to <code>crypt</code>.
* @param key: arbitrary binary string to be used as a key.
* @return The plaintext.
*/
static int decrypt (lua_State *L) {
size_t lcyphertext;
const char *cyphertext = luaL_checklstring(L, 1, &lcyphertext);
size_t lseed = cyphertext[0];
const char *seed = cyphertext+1;
int lblock;
char block[BLOCKSIZE+MAXKEY];
luaL_argcheck(L, lcyphertext >= lseed+1 && lseed <= BLOCKSIZE, 1,
"invalid cyphered string");
cyphertext += lseed+1;
lcyphertext -= lseed+1;
lblock = initblock(L, seed, lseed, block);
decodestream(L, cyphertext, lcyphertext, block, lblock);
return 1;
}
/*
** Assumes the table is on top of the stack.
*/
static void set_info (lua_State *L) {
lua_pushliteral (L, "_COPYRIGHT");
lua_pushliteral (L, "Copyright (C) 2003 PUC-Rio");
lua_settable (L, -3);
lua_pushliteral (L, "_DESCRIPTION");
lua_pushliteral (L, "Basic cryptographic facilities");
lua_settable (L, -3);
lua_pushliteral (L, "_VERSION");
lua_pushliteral (L, "MD5 1.1.2");
lua_settable (L, -3);
}
static struct luaL_reg md5lib[] = {
{"sum", lmd5},
{"exor", ex_or},
{"crypt", crypt},
{"decrypt", decrypt},
{NULL, NULL}
};
int luaopen_md5_core (lua_State *L) {
luaL_openlib(L, "md5.core", md5lib, 0);
set_info (L);
return 1;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment