sdnoise1234.c
29.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/* sdnoise1234, Simplex noise with true analytic
* derivative in 1D to 4D.
*
* Copyright © 2003-2008, Stefan Gustavson
*
* Contact: stefan.gustavson@gmail.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/** \file
\brief C implementation file for Perlin simplex noise with analytic
derivative over 1, 2, 3 and 4 dimensions.
\author Stefan Gustavson (stefan.gustavson@gmail.com)
\author Charl van Deventer (landon.skyfire@gmail.com)
*/
/*
* This is an implementation of Perlin "simplex noise" over one
* dimension (x), two dimensions (x,y), three dimensions (x,y,z)
* and four dimensions (x,y,z,w). The analytic derivative is
* returned, to make it possible to do lots of fun stuff like
* flow animations, curl noise, analytic antialiasing and such.
*
* Visually, this noise is exactly the same as the plain version of
* simplex noise provided in the file "snoise1234.c". It just returns
* all partial derivatives in addition to the scalar noise value.
*
*/
/*
* 23 June 2010: Modified by Charl van Deventer to allow periodic arguments
* Note: It doesn't check for bounds over 255 (wont work) and might fail with
* negative coords.
*/
#include <math.h>
#include "sdnoise1234.h" /* We strictly don't need this, but play nice. */
#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
/* Static data ---------------------- */
/*
* Permutation table. This is just a random jumble of all numbers 0-255,
* repeated twice to avoid wrapping the index at 255 for each lookup.
*/
unsigned char perm[512] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
/*
* Gradient tables. These could be programmed the Ken Perlin way with
* some clever bit-twiddling, but this is more clear, and not really slower.
*/
static float grad2lut[8][2] = {
{ -1.0f, -1.0f }, { 1.0f, 0.0f } , { -1.0f, 0.0f } , { 1.0f, 1.0f } ,
{ -1.0f, 1.0f } , { 0.0f, -1.0f } , { 0.0f, 1.0f } , { 1.0f, -1.0f }
};
/*
* Gradient directions for 3D.
* These vectors are based on the midpoints of the 12 edges of a cube.
* A larger array of random unit length vectors would also do the job,
* but these 12 (including 4 repeats to make the array length a power
* of two) work better. They are not random, they are carefully chosen
* to represent a small, isotropic set of directions.
*/
static float grad3lut[16][3] = {
{ 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f, 1.0f }, // 12 cube edges
{ -1.0f, 0.0f, 1.0f }, { 0.0f, -1.0f, 1.0f },
{ 1.0f, 0.0f, -1.0f }, { 0.0f, 1.0f, -1.0f },
{ -1.0f, 0.0f, -1.0f }, { 0.0f, -1.0f, -1.0f },
{ 1.0f, -1.0f, 0.0f }, { 1.0f, 1.0f, 0.0f },
{ -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, 0.0f },
{ 1.0f, 0.0f, 1.0f }, { -1.0f, 0.0f, 1.0f }, // 4 repeats to make 16
{ 0.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f }
};
static float grad4lut[32][4] = {
{ 0.0f, 1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f, -1.0f, -1.0f }, // 32 tesseract edges
{ 0.0f, -1.0f, 1.0f, 1.0f }, { 0.0f, -1.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f, 1.0f }, { 0.0f, -1.0f, -1.0f, -1.0f },
{ 1.0f, 0.0f, 1.0f, 1.0f }, { 1.0f, 0.0f, 1.0f, -1.0f }, { 1.0f, 0.0f, -1.0f, 1.0f }, { 1.0f, 0.0f, -1.0f, -1.0f },
{ -1.0f, 0.0f, 1.0f, 1.0f }, { -1.0f, 0.0f, 1.0f, -1.0f }, { -1.0f, 0.0f, -1.0f, 1.0f }, { -1.0f, 0.0f, -1.0f, -1.0f },
{ 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f, 0.0f, -1.0f }, { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, -1.0f, 0.0f, -1.0f },
{ -1.0f, 1.0f, 0.0f, 1.0f }, { -1.0f, 1.0f, 0.0f, -1.0f }, { -1.0f, -1.0f, 0.0f, 1.0f }, { -1.0f, -1.0f, 0.0f, -1.0f },
{ 1.0f, 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f, -1.0f, 0.0f }, { 1.0f, -1.0f, 1.0f, 0.0f }, { 1.0f, -1.0f, -1.0f, 0.0f },
{ -1.0f, 1.0f, 1.0f, 0.0f }, { -1.0f, 1.0f, -1.0f, 0.0f }, { -1.0f, -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, -1.0f, 0.0f }
};
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
/* TODO: This should not be required, backport it from Bill's GLSL code! */
static unsigned char simplex[64][4] = {
{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
/* --------------------------------------------------------------------- */
/*
* Helper functions to compute gradients in 1D to 4D
* and gradients-dot-residualvectors in 2D to 4D.
*/
void grad1( int hash, float *gx ) {
int h = hash & 15;
*gx = 1.0f + (h & 7); // Gradient value is one of 1.0, 2.0, ..., 8.0
if (h&8) *gx = - *gx; // Make half of the gradients negative
}
void grad2( int hash, float *gx, float *gy ) {
int h = hash & 7;
*gx = grad2lut[h][0];
*gy = grad2lut[h][1];
return;
}
void grad3( int hash, float *gx, float *gy, float *gz ) {
int h = hash & 15;
*gx = grad3lut[h][0];
*gy = grad3lut[h][1];
*gz = grad3lut[h][2];
return;
}
void grad4( int hash, float *gx, float *gy, float *gz, float *gw) {
int h = hash & 31;
*gx = grad4lut[h][0];
*gy = grad4lut[h][1];
*gz = grad4lut[h][2];
*gw = grad4lut[h][3];
return;
}
/** 1D simplex noise with derivative.
* If the last argument is not null, the analytic derivative
* is also calculated.
*/
float sdnoise1( float x, int px, float *dnoise_dx)
{
int i0 = FASTFLOOR(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float gx0, gx1;
float n0, n1;
float t20, t40, t21, t41;
float x20 = x0*x0;
float t0 = 1.0f - x20;
// if(t0 < 0.0f) t0 = 0.0f; // Never happens for 1D: x0<=1 always
t20 = t0 * t0;
t40 = t20 * t20;
grad1(perm[i0 % px], &gx0);
n0 = t40 * gx0 * x0;
float x21 = x1*x1;
float t1 = 1.0f - x21;
// if(t1 < 0.0f) t1 = 0.0f; // Never happens for 1D: |x1|<=1 always
t21 = t1 * t1;
t41 = t21 * t21;
grad1(perm[i1 % px], &gx1);
n1 = t41 * gx1 * x1;
/* Compute derivative according to:
* *dnoise_dx = -8.0f * t20 * t0 * x0 * (gx0 * x0) + t40 * gx0;
* *dnoise_dx += -8.0f * t21 * t1 * x1 * (gx1 * x1) + t41 * gx1;
*/
*dnoise_dx = t20 * t0 * gx0 * x20;
*dnoise_dx += t21 * t1 * gx1 * x21;
*dnoise_dx *= -8.0f;
*dnoise_dx += t40 * gx0 + t41 * gx1;
*dnoise_dx *= 0.25f; /* Scale derivative to match the noise scaling */
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 would scale to fit exactly within [-1,1], but
// to better match classic Perlin noise, we scale it down some more.
return 0.25f * (n0 + n1);
}
float sdnoise1s( float x, float *dnoise_dx)
{
return sdnoise1(x, 256, dnoise_dx);
}
/* Skewing factors for 2D simplex grid:
* F2 = 0.5*(sqrt(3.0)-1.0)
* G2 = (3.0-Math.sqrt(3.0))/6.0
*/
#define F2 0.366025403
#define G2 0.211324865
/** 2D simplex noise with derivatives.
* If the last two arguments are not null, the analytic derivative
* (the 2D gradient of the scalar noise field) is also calculated.
*/
float sdnoise2( float x, float y, int px, int py, float *dnoise_dx, float *dnoise_dy )
{
float n0, n1, n2; /* Noise contributions from the three simplex corners */
float gx0, gy0, gx1, gy1, gx2, gy2; /* Gradients at simplex corners */
/* Skew the input space to determine which simplex cell we're in */
float s = ( x + y ) * F2; /* Hairy factor for 2D */
float xs = x + s;
float ys = y + s;
int i = FASTFLOOR( xs );
int j = FASTFLOOR( ys );
float t = ( float ) ( i + j ) * G2;
float X0 = i - t; /* Unskew the cell origin back to (x,y) space */
float Y0 = j - t;
float x0 = x - X0; /* The x,y distances from the cell origin */
float y0 = y - Y0;
/* For the 2D case, the simplex shape is an equilateral triangle.
* Determine which simplex we are in. */
int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
if( x0 > y0 ) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
else { i1 = 0; j1 = 1; } /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
* c = (3-sqrt(3))/6 */
float x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
float y2 = y0 - 1.0f + 2.0f * G2;
/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
int ii = i % px;
int jj = j % py;
/* Calculate the contribution from the three corners */
float t0 = 0.5f - x0 * x0 - y0 * y0;
float t20, t40;
if( t0 < 0.0f ) t40 = t20 = t0 = n0 = gx0 = gy0 = 0.0f; /* No influence */
else {
grad2( perm[ii + perm[jj]], &gx0, &gy0 );
t20 = t0 * t0;
t40 = t20 * t20;
n0 = t40 * ( gx0 * x0 + gy0 * y0 );
}
float t1 = 0.5f - x1 * x1 - y1 * y1;
float t21, t41;
if( t1 < 0.0f ) t21 = t41 = t1 = n1 = gx1 = gy1 = 0.0f; /* No influence */
else {
grad2( perm[ii + i1 + perm[jj + j1]], &gx1, &gy1 );
t21 = t1 * t1;
t41 = t21 * t21;
n1 = t41 * ( gx1 * x1 + gy1 * y1 );
}
float t2 = 0.5f - x2 * x2 - y2 * y2;
float t22, t42;
if( t2 < 0.0f ) t42 = t22 = t2 = n2 = gx2 = gy2 = 0.0f; /* No influence */
else {
grad2( perm[ii + 1 + perm[jj + 1]], &gx2, &gy2 );
t22 = t2 * t2;
t42 = t22 * t22;
n2 = t42 * ( gx2 * x2 + gy2 * y2 );
}
/* Add contributions from each corner to get the final noise value.
* The result is scaled to return values in the interval [-1,1]. */
float noise = 40.0f * ( n0 + n1 + n2 );
/* Compute derivative, if requested by supplying non-null pointers
* for the last two arguments */
if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) )
{
/* A straight, unoptimised calculation would be like:
* *dnoise_dx = -8.0f * t20 * t0 * x0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gx0;
* *dnoise_dy = -8.0f * t20 * t0 * y0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gy0;
* *dnoise_dx += -8.0f * t21 * t1 * x1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gx1;
* *dnoise_dy += -8.0f * t21 * t1 * y1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gy1;
* *dnoise_dx += -8.0f * t22 * t2 * x2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gx2;
* *dnoise_dy += -8.0f * t22 * t2 * y2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gy2;
*/
float temp0 = t20 * t0 * ( gx0* x0 + gy0 * y0 );
*dnoise_dx = temp0 * x0;
*dnoise_dy = temp0 * y0;
float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 );
*dnoise_dx += temp1 * x1;
*dnoise_dy += temp1 * y1;
float temp2 = t22 * t2 * ( gx2* x2 + gy2 * y2 );
*dnoise_dx += temp2 * x2;
*dnoise_dy += temp2 * y2;
*dnoise_dx *= -8.0f;
*dnoise_dy *= -8.0f;
*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2;
*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2;
*dnoise_dx *= 40.0f; /* Scale derivative to match the noise scaling */
*dnoise_dy *= 40.0f;
}
return noise;
}
float sdnoise2s( float x, float y, float *dnoise_dx, float *dnoise_dy )
{
return sdnoise2( x, y, 256, 256, dnoise_dx, dnoise_dy );
}
/* Skewing factors for 3D simplex grid:
* F3 = 1/3
* G3 = 1/6 */
#define F3 0.333333333
#define G3 0.166666667
/** 3D simplex noise with derivatives.
* If the last tthree arguments are not null, the analytic derivative
* (the 3D gradient of the scalar noise field) is also calculated.
*/
float sdnoise3( float x, float y, float z, int px, int py, int pz,
float *dnoise_dx, float *dnoise_dy, float *dnoise_dz )
{
float n0, n1, n2, n3; /* Noise contributions from the four simplex corners */
float noise; /* Return value */
float gx0, gy0, gz0, gx1, gy1, gz1; /* Gradients at simplex corners */
float gx2, gy2, gz2, gx3, gy3, gz3;
/* Skew the input space to determine which simplex cell we're in */
float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
float xs = x+s;
float ys = y+s;
float zs = z+s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
float t = (float)(i+j+k)*G3;
float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
float Y0 = j-t;
float Z0 = k-t;
float x0 = x-X0; /* The x,y,z distances from the cell origin */
float y0 = y-Y0;
float z0 = z-Z0;
/* For the 3D case, the simplex shape is a slightly irregular tetrahedron.
* Determine which simplex we are in. */
int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
/* TODO: This code would benefit from a backport from the GLSL version! */
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
}
/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
* a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
* a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
* c = 1/6. */
float x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */
float y2 = y0 - j2 + 2.0f * G3;
float z2 = z0 - k2 + 2.0f * G3;
float x3 = x0 - 1.0f + 3.0f * G3; /* Offsets for last corner in (x,y,z) coords */
float y3 = y0 - 1.0f + 3.0f * G3;
float z3 = z0 - 1.0f + 3.0f * G3;
/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
int ii = i % px;
int jj = j % py;
int kk = k % pz;
/* Calculate the contribution from the four corners */
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
float t20, t40;
if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = 0.0f;
else {
grad3( perm[ii + perm[jj + perm[kk]]], &gx0, &gy0, &gz0 );
t20 = t0 * t0;
t40 = t20 * t20;
n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
float t21, t41;
if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = 0.0f;
else {
grad3( perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], &gx1, &gy1, &gz1 );
t21 = t1 * t1;
t41 = t21 * t21;
n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
float t22, t42;
if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = 0.0f;
else {
grad3( perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], &gx2, &gy2, &gz2 );
t22 = t2 * t2;
t42 = t22 * t22;
n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
float t23, t43;
if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = 0.0f;
else {
grad3( perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], &gx3, &gy3, &gz3 );
t23 = t3 * t3;
t43 = t23 * t23;
n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
}
/* Add contributions from each corner to get the final noise value.
* The result is scaled to return values in the range [-1,1] */
noise = 28.0f * (n0 + n1 + n2 + n3);
/* Compute derivative, if requested by supplying non-null pointers
* for the last three arguments */
if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ))
{
/* A straight, unoptimised calculation would be like:
* *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gx0;
* *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gy0;
* *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gz0;
* *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gx1;
* *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gy1;
* *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gz1;
* *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gx2;
* *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gy2;
* *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gz2;
* *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gx3;
* *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gy3;
* *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gz3;
*/
float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
*dnoise_dx = temp0 * x0;
*dnoise_dy = temp0 * y0;
*dnoise_dz = temp0 * z0;
float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
*dnoise_dx += temp1 * x1;
*dnoise_dy += temp1 * y1;
*dnoise_dz += temp1 * z1;
float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
*dnoise_dx += temp2 * x2;
*dnoise_dy += temp2 * y2;
*dnoise_dz += temp2 * z2;
float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
*dnoise_dx += temp3 * x3;
*dnoise_dy += temp3 * y3;
*dnoise_dz += temp3 * z3;
*dnoise_dx *= -8.0f;
*dnoise_dy *= -8.0f;
*dnoise_dz *= -8.0f;
*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3;
*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3;
*dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3;
*dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */
*dnoise_dy *= 28.0f;
*dnoise_dz *= 28.0f;
}
return noise;
}
float sdnoise3s( float x, float y, float z, float *dnoise_dx, float *dnoise_dy, float *dnoise_dz )
{
return sdnoise3(x, y, z, 256, 256, 256, dnoise_dx, dnoise_dy, dnoise_dz);
}
// The skewing and unskewing factors are hairy again for the 4D case
#define F4 0.309016994 // F4 = (Math.sqrt(5.0)-1.0)/4.0
#define G4 0.138196601 // G4 = (5.0-Math.sqrt(5.0))/20.0
/** 4D simplex noise with derivatives.
* If the last four arguments are not null, the analytic derivative
* (the 4D gradient of the scalar noise field) is also calculated.
*/
float sdnoise4( float x, float y, float z, float w,
int px, int py, int pz, int pw,
float *dnoise_dx, float *dnoise_dy,
float *dnoise_dz, float *dnoise_dw)
{
float n0, n1, n2, n3, n4; // Noise contributions from the five corners
float noise; // Return value
float gx0, gy0, gz0, gw0, gx1, gy1, gz1, gw1; /* Gradients at simplex corners */
float gx2, gy2, gz2, gw2, gx3, gy3, gz3, gw3, gx4, gy4, gz4, gw4;
float t20, t21, t22, t23, t24;
float t40, t41, t42, t43, t44;
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
float s = (x + y + z + w) * F4; // Factor for 4D skewing
float xs = x + s;
float ys = y + s;
float zs = z + s;
float ws = w + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
int l = FASTFLOOR(ws);
float t = (i + j + k + l) * G4; // Factor for 4D unskewing
float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
float Y0 = j - t;
float Z0 = k - t;
float W0 = l - t;
float x0 = x - X0; // The x,y,z,w distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
float w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// The method below is a reasonable way of finding the ordering of x,y,z,w
// and then find the correct traversal order for the simplex were in.
// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and then the results are used to add up binary
// bits for an integer index into a precomputed lookup table, simplex[].
int c1 = (x0 > y0) ? 32 : 0;
int c2 = (x0 > z0) ? 16 : 0;
int c3 = (y0 > z0) ? 8 : 0;
int c4 = (x0 > w0) ? 4 : 0;
int c5 = (y0 > w0) ? 2 : 0;
int c6 = (z0 > w0) ? 1 : 0;
int c = c1 | c2 | c3 | c4 | c5 | c6; // '|' is mostly faster than '+'
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = simplex[c][0]>=3 ? 1 : 0;
j1 = simplex[c][1]>=3 ? 1 : 0;
k1 = simplex[c][2]>=3 ? 1 : 0;
l1 = simplex[c][3]>=3 ? 1 : 0;
// The number 2 in the "simplex" array is at the second largest coordinate.
i2 = simplex[c][0]>=2 ? 1 : 0;
j2 = simplex[c][1]>=2 ? 1 : 0;
k2 = simplex[c][2]>=2 ? 1 : 0;
l2 = simplex[c][3]>=2 ? 1 : 0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[c][0]>=1 ? 1 : 0;
j3 = simplex[c][1]>=1 ? 1 : 0;
k3 = simplex[c][2]>=1 ? 1 : 0;
l3 = simplex[c][3]>=1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
float y1 = y0 - j1 + G4;
float z1 = z0 - k1 + G4;
float w1 = w0 - l1 + G4;
float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords
float y2 = y0 - j2 + 2.0f * G4;
float z2 = z0 - k2 + 2.0f * G4;
float w2 = w0 - l2 + 2.0f * G4;
float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords
float y3 = y0 - j3 + 3.0f * G4;
float z3 = z0 - k3 + 3.0f * G4;
float w3 = w0 - l3 + 3.0f * G4;
float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords
float y4 = y0 - 1.0f + 4.0f * G4;
float z4 = z0 - 1.0f + 4.0f * G4;
float w4 = w0 - 1.0f + 4.0f * G4;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % px;
int jj = j % py;
int kk = k % pz;
int ll = l % pw;
// Calculate the contribution from the five corners
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = gw0 = 0.0f;
else {
t20 = t0 * t0;
t40 = t20 * t20;
grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], &gx0, &gy0, &gz0, &gw0);
n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = gw1 = 0.0f;
else {
t21 = t1 * t1;
t41 = t21 * t21;
grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], &gx1, &gy1, &gz1, &gw1);
n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = gw2 = 0.0f;
else {
t22 = t2 * t2;
t42 = t22 * t22;
grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], &gx2, &gy2, &gz2, &gw2);
n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = gw3 = 0.0f;
else {
t23 = t3 * t3;
t43 = t23 * t23;
grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], &gx3, &gy3, &gz3, &gw3);
n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
}
float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
if(t4 < 0.0f) n4 = t4 = t24 = t44 = gx4 = gy4 = gz4 = gw4 = 0.0f;
else {
t24 = t4 * t4;
t44 = t24 * t24;
grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], &gx4, &gy4, &gz4, &gw4);
n4 = t44 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
}
// Sum up and scale the result to cover the range [-1,1]
noise = 27.0f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
/* Compute derivative, if requested by supplying non-null pointers
* for the last four arguments */
if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ) && ( dnoise_dw != 0 ) )
{
/* A straight, unoptimised calculation would be like:
* *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gx0;
* *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gy0;
* *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gz0;
* *dnoise_dw = -8.0f * t20 * t0 * w0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gw0;
* *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gx1;
* *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gy1;
* *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gz1;
* *dnoise_dw = -8.0f * t21 * t1 * w1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gw1;
* *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gx2;
* *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gy2;
* *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gz2;
* *dnoise_dw += -8.0f * t22 * t2 * w2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gw2;
* *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gx3;
* *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gy3;
* *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gz3;
* *dnoise_dw += -8.0f * t23 * t3 * w3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gw3;
* *dnoise_dx += -8.0f * t24 * t4 * x4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gx4;
* *dnoise_dy += -8.0f * t24 * t4 * y4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gy4;
* *dnoise_dz += -8.0f * t24 * t4 * z4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gz4;
* *dnoise_dw += -8.0f * t24 * t4 * w4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gw4;
*/
float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
*dnoise_dx = temp0 * x0;
*dnoise_dy = temp0 * y0;
*dnoise_dz = temp0 * z0;
*dnoise_dw = temp0 * w0;
float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
*dnoise_dx += temp1 * x1;
*dnoise_dy += temp1 * y1;
*dnoise_dz += temp1 * z1;
*dnoise_dw += temp1 * w1;
float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
*dnoise_dx += temp2 * x2;
*dnoise_dy += temp2 * y2;
*dnoise_dz += temp2 * z2;
*dnoise_dw += temp2 * w2;
float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
*dnoise_dx += temp3 * x3;
*dnoise_dy += temp3 * y3;
*dnoise_dz += temp3 * z3;
*dnoise_dw += temp3 * w3;
float temp4 = t24 * t4 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
*dnoise_dx += temp4 * x4;
*dnoise_dy += temp4 * y4;
*dnoise_dz += temp4 * z4;
*dnoise_dw += temp4 * w4;
*dnoise_dx *= -8.0f;
*dnoise_dy *= -8.0f;
*dnoise_dz *= -8.0f;
*dnoise_dw *= -8.0f;
*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3 + t44 * gx4;
*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3 + t44 * gy4;
*dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3 + t44 * gz4;
*dnoise_dw += t40 * gw0 + t41 * gw1 + t42 * gw2 + t43 * gw3 + t44 * gw4;
*dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */
*dnoise_dy *= 28.0f;
*dnoise_dz *= 28.0f;
*dnoise_dw *= 28.0f;
}
return noise;
}
float sdnoise4s( float x, float y, float z, float w,
float *dnoise_dx, float *dnoise_dy,
float *dnoise_dz, float *dnoise_dw)
{
return sdnoise4( x, y, z, w,
256, 256, 256, 256,
dnoise_dx, dnoise_dy,
dnoise_dz, dnoise_dw);
}