SFMT.c 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/**
 * @file  SFMT.c
 * @brief SIMD oriented Fast Mersenne Twister(SFMT)
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 *
 * The new BSD License is applied to this software, see LICENSE.txt
 */
#include <string.h>
#include <assert.h>
#include "SFMT.h"
#include "SFMT-params.h"

#if defined(ALTIVEC)
  #include "SFMT-alti.h"
#elif defined(SSE2)
  #include "SFMT-sse2.h"
#else
/*------------------------------------------
  128-bit SIMD like data type for standard C
  ------------------------------------------*/
/** 128-bit data structure */
struct W128_T {
    uint32_t u[4];
};

/** 128-bit data type */
typedef struct W128_T w128_t;

#endif

/*--------------------------------------
  FILE GLOBAL VARIABLES
  internal state, index counter and flag
  --------------------------------------*/
/** the 128-bit internal state array */
static w128_t sfmt[N];
/** the 32bit integer pointer to the 128-bit internal state array */
static uint32_t *psfmt32 = &sfmt[0].u[0];
#if !defined(BIG_ENDIAN64) || defined(ONLY64)
/** the 64bit integer pointer to the 128-bit internal state array */
static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
#endif
/** index counter to the 32-bit internal state array */
static int idx;
/** a flag: it is 0 if and only if the internal state is not yet
 * initialized. */
static int initialized = 0;
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};

/*----------------
  STATIC FUNCTIONS
  ----------------*/
inline static int idxof(int i);
inline static void rshift128(w128_t *out,  w128_t const *in, int shift);
inline static void lshift128(w128_t *out,  w128_t const *in, int shift);
inline static void gen_rand_all(void);
inline static void gen_rand_array(w128_t array[], int size);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(void);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
inline static void swap(w128_t array[], int size);
#endif

#if defined(ALTIVEC)
  #include "SFMT-alti.c"
#elif defined(SSE2)
  #include "SFMT-sse2.c"
#endif

/**
 * This function simulate a 64-bit index of LITTLE ENDIAN
 * in BIG ENDIAN machine.
 */
#ifdef ONLY64
inline static int idxof(int i) {
    return i ^ 1;
}
#else
inline static int idxof(int i) {
    return i;
}
#endif
/**
 * This function simulates SIMD 128-bit right shift by the standard C.
 * The 128-bit integer given in in is shifted by (shift * 8) bits.
 * This function simulates the LITTLE ENDIAN SIMD.
 * @param out the output of this function
 * @param in the 128-bit data to be shifted
 * @param shift the shift value
 */
#ifdef ONLY64
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
    tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);

    oh = th >> (shift * 8);
    ol = tl >> (shift * 8);
    ol |= th << (64 - shift * 8);
    out->u[0] = (uint32_t)(ol >> 32);
    out->u[1] = (uint32_t)ol;
    out->u[2] = (uint32_t)(oh >> 32);
    out->u[3] = (uint32_t)oh;
}
#else
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
    tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);

    oh = th >> (shift * 8);
    ol = tl >> (shift * 8);
    ol |= th << (64 - shift * 8);
    out->u[1] = (uint32_t)(ol >> 32);
    out->u[0] = (uint32_t)ol;
    out->u[3] = (uint32_t)(oh >> 32);
    out->u[2] = (uint32_t)oh;
}
#endif
/**
 * This function simulates SIMD 128-bit left shift by the standard C.
 * The 128-bit integer given in in is shifted by (shift * 8) bits.
 * This function simulates the LITTLE ENDIAN SIMD.
 * @param out the output of this function
 * @param in the 128-bit data to be shifted
 * @param shift the shift value
 */
#ifdef ONLY64
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
    tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);

    oh = th << (shift * 8);
    ol = tl << (shift * 8);
    oh |= tl >> (64 - shift * 8);
    out->u[0] = (uint32_t)(ol >> 32);
    out->u[1] = (uint32_t)ol;
    out->u[2] = (uint32_t)(oh >> 32);
    out->u[3] = (uint32_t)oh;
}
#else
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
    tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);

    oh = th << (shift * 8);
    ol = tl << (shift * 8);
    oh |= tl >> (64 - shift * 8);
    out->u[1] = (uint32_t)(ol >> 32);
    out->u[0] = (uint32_t)ol;
    out->u[3] = (uint32_t)(oh >> 32);
    out->u[2] = (uint32_t)oh;
}
#endif

/**
 * This function represents the recursion formula.
 * @param r output
 * @param a a 128-bit part of the internal state array
 * @param b a 128-bit part of the internal state array
 * @param c a 128-bit part of the internal state array
 * @param d a 128-bit part of the internal state array
 */
#ifdef ONLY64
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
				w128_t *d) {
    w128_t x;
    w128_t y;

    lshift128(&x, a, SL2);
    rshift128(&y, c, SR2);
    r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
	^ (d->u[0] << SL1);
    r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
	^ (d->u[1] << SL1);
    r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
	^ (d->u[2] << SL1);
    r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
	^ (d->u[3] << SL1);
}
#else
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
				w128_t *d) {
    w128_t x;
    w128_t y;

    lshift128(&x, a, SL2);
    rshift128(&y, c, SR2);
    r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
	^ (d->u[0] << SL1);
    r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
	^ (d->u[1] << SL1);
    r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
	^ (d->u[2] << SL1);
    r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
	^ (d->u[3] << SL1);
}
#endif

#if (!defined(ALTIVEC)) && (!defined(SSE2))
/**
 * This function fills the internal state array with pseudorandom
 * integers.
 */
inline static void gen_rand_all(void) {
    int i;
    w128_t *r1, *r2;

    r1 = &sfmt[N - 2];
    r2 = &sfmt[N - 1];
    for (i = 0; i < N - POS1; i++) {
	do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
	r1 = r2;
	r2 = &sfmt[i];
    }
    for (; i < N; i++) {
	do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &sfmt[i];
    }
}

/**
 * This function fills the user-specified array with pseudorandom
 * integers.
 *
 * @param array an 128-bit array to be filled by pseudorandom numbers.
 * @param size number of 128-bit pseudorandom numbers to be generated.
 */
inline static void gen_rand_array(w128_t array[], int size) {
    int i, j;
    w128_t *r1, *r2;

    r1 = &sfmt[N - 2];
    r2 = &sfmt[N - 1];
    for (i = 0; i < N - POS1; i++) {
	do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < N; i++) {
	do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < size - N; i++) {
	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (j = 0; j < 2 * N - size; j++) {
	sfmt[j] = array[j + size - N];
    }
    for (; i < size; i++, j++) {
	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
	sfmt[j] = array[i];
    }
}
#endif

#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(ALTIVEC)
inline static void swap(w128_t array[], int size) {
    int i;
    uint32_t x, y;

    for (i = 0; i < size; i++) {
	x = array[i].u[0];
	y = array[i].u[2];
	array[i].u[0] = array[i].u[1];
	array[i].u[2] = array[i].u[3];
	array[i].u[1] = x;
	array[i].u[3] = y;
    }
}
#endif
/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func1(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}

/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func2(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}

/**
 * This function certificate the period of 2^{MEXP}
 */
static void period_certification(void) {
    int inner = 0;
    int i, j;
    uint32_t work;

    for (i = 0; i < 4; i++) {
	work = psfmt32[idxof(i)] & parity[i];
	for (j = 0; j < 32; j++) {
	    inner ^= work & 1;
	    work = work >> 1;
	}
    }
    /* check OK */
    if (inner == 1) {
	return;
    }
    /* check NG, and modification */
    for (i = 0; i < 4; i++) {
	work = 1;
	for (j = 0; j < 32; j++) {
	    if ((work & parity[i]) != 0) {
		psfmt32[idxof(i)] ^= work;
		return;
	    }
	    work = work << 1;
	}
    }
}

/*----------------
  PUBLIC FUNCTIONS
  ----------------*/
/**
 * This function returns the identification string.
 * The string shows the word size, the Mersenne exponent,
 * and all parameters of this generator.
 */
char *get_idstring(void) {
    return IDSTR;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array32() function.
 * @return minimum size of array used for fill_array32() function.
 */
int get_min_array_size32(void) {
    return N32;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array64() function.
 * @return minimum size of array used for fill_array64() function.
 */
int get_min_array_size64(void) {
    return N64;
}

#ifndef ONLY64
/**
 * This function generates and returns 32-bit pseudorandom number.
 * init_gen_rand or init_by_array must be called before this function.
 * @return 32-bit pseudorandom number
 */
uint32_t gen_rand32(void) {
    uint32_t r;

    assert(initialized);
    if (idx >= N32) {
	gen_rand_all();
	idx = 0;
    }
    r = psfmt32[idx++];
    return r;
}
#endif
/**
 * This function generates and returns 64-bit pseudorandom number.
 * init_gen_rand or init_by_array must be called before this function.
 * The function gen_rand64 should not be called after gen_rand32,
 * unless an initialization is again executed.
 * @return 64-bit pseudorandom number
 */
inline uint64_t gen_rand64(void) {
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
    uint32_t r1, r2;
#else
    uint64_t r;
#endif

    assert(initialized);
    assert(idx % 2 == 0);

    if (idx >= N32) {
	gen_rand_all();
	idx = 0;
    }
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
    r1 = psfmt32[idx];
    r2 = psfmt32[idx + 1];
    idx += 2;
    return ((uint64_t)r2 << 32) | r1;
#else
    r = psfmt64[idx / 2];
    idx += 2;
    return r;
#endif
}

#ifndef ONLY64
/**
 * This function generates pseudorandom 32-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 624 and a
 * multiple of four.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param array an array where pseudorandom 32-bit integers are filled
 * by this function.  The pointer to the array must be \b "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 32-bit pseudorandom integers to be
 * generated.  size must be a multiple of 4, and greater than or equal
 * to (MEXP / 128 + 1) * 4.
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
inline void fill_array32(uint32_t array[], int size) {
    assert(initialized);
    assert(idx == N32);
    assert(size % 4 == 0);
    assert(size >= N32);

    gen_rand_array((w128_t *)array, size / 4);
    idx = N32;
}
#endif

/**
 * This function generates pseudorandom 64-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 312 and a
 * multiple of two.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param array an array where pseudorandom 64-bit integers are filled
 * by this function.  The pointer to the array must be "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 64-bit pseudorandom integers to be
 * generated.  size must be a multiple of 2, and greater than or equal
 * to (MEXP / 128 + 1) * 2
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
inline void fill_array64(uint64_t array[], int size) {
    assert(initialized);
    assert(idx == N32);
    assert(size % 2 == 0);
    assert(size >= N64);

    gen_rand_array((w128_t *)array, size / 2);
    idx = N32;

#if defined(BIG_ENDIAN64) && !defined(ONLY64)
    swap((w128_t *)array, size /2);
#endif
}

/**
 * This function initializes the internal state array with a 32-bit
 * integer seed.
 *
 * @param seed a 32-bit integer used as the seed.
 */
void init_gen_rand(uint32_t seed) {
    int i;

    psfmt32[idxof(0)] = seed;
    for (i = 1; i < N32; i++) {
	psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
					    ^ (psfmt32[idxof(i - 1)] >> 30))
	    + i;
    }
    idx = N32;
    period_certification();
    initialized = 1;
}

/**
 * This function initializes the internal state array,
 * with an array of 32-bit integers used as the seeds
 * @param init_key the array of 32-bit integers, used as a seed.
 * @param key_length the length of init_key.
 */
void init_by_array(uint32_t init_key[], int key_length) {
    int i, j, count;
    uint32_t r;
    int lag;
    int mid;
    int size = N * 4;

    if (size >= 623) {
	lag = 11;
    } else if (size >= 68) {
	lag = 7;
    } else if (size >= 39) {
	lag = 5;
    } else {
	lag = 3;
    }
    mid = (size - lag) / 2;

    memset(sfmt, 0x8b, sizeof(sfmt));
    if (key_length + 1 > N32) {
	count = key_length + 1;
    } else {
	count = N32;
    }
    r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
	      ^ psfmt32[idxof(N32 - 1)]);
    psfmt32[idxof(mid)] += r;
    r += key_length;
    psfmt32[idxof(mid + lag)] += r;
    psfmt32[idxof(0)] = r;
    i = 1;
    count--;
    for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] += r;
	r += init_key[j] + i;
	psfmt32[idxof((i + mid + lag) % N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }
    for (; j < count; j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] += r;
	r += i;
	psfmt32[idxof((i + mid + lag) % N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }
    for (j = 0; j < N32; j++) {
	r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
		  + psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] ^= r;
	r -= i;
	psfmt32[idxof((i + mid + lag) % N32)] ^= r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }

    idx = N32;
    period_certification();
    initialized = 1;
}

uint32_t rand_div(uint32_t m)
{
	uint32_t r;

	/* Hack -- simple case */
	if (m <= 1) return (0);

	uint32_t used = m;
	used |= used >> 1;
	used |= used >> 2;
	used |= used >> 4;
	used |= used >> 8;
	used |= used >> 16;

	// Draw numbers until one is found in [0,n]
	do r = gen_rand32() & used;  // toss unused bits to shorten search
	while( r >= m );

	/* Use the value */
	return (r);
}