sdnoise1234.c 29.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* sdnoise1234, Simplex noise with true analytic
 * derivative in 1D to 4D.
 *
 * Copyright © 2003-2008, Stefan Gustavson
 *
 * Contact: stefan.gustavson@gmail.com
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/** \file
 \brief C implementation file for Perlin simplex noise with analytic
 derivative over 1, 2, 3 and 4 dimensions.
 \author Stefan Gustavson (stefan.gustavson@gmail.com)
 \author Charl van Deventer (landon.skyfire@gmail.com)
 */

/*
 * This is an implementation of Perlin "simplex noise" over one
 * dimension (x), two dimensions (x,y), three dimensions (x,y,z)
 * and four dimensions (x,y,z,w). The analytic derivative is
 * returned, to make it possible to do lots of fun stuff like
 * flow animations, curl noise, analytic antialiasing and such.
 *
 * Visually, this noise is exactly the same as the plain version of
 * simplex noise provided in the file "snoise1234.c". It just returns
 * all partial derivatives in addition to the scalar noise value.
 *
 */

/*
 * 23 June 2010: Modified by Charl van Deventer to allow periodic arguments
 * Note: It doesn't check for bounds over 255 (wont work) and might fail with
 * negative coords.
 */

#include <math.h>

#include "sdnoise1234.h" /* We strictly don't need this, but play nice. */

#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )

/* Static data ---------------------- */

/*
 * Permutation table. This is just a random jumble of all numbers 0-255,
 * repeated twice to avoid wrapping the index at 255 for each lookup.
 */
unsigned char perm[512] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};

/*
 * Gradient tables. These could be programmed the Ken Perlin way with
 * some clever bit-twiddling, but this is more clear, and not really slower.
 */
static float grad2lut[8][2] = {
	{ -1.0f, -1.0f }, { 1.0f, 0.0f } , { -1.0f, 0.0f } , { 1.0f, 1.0f } ,
	{ -1.0f, 1.0f } , { 0.0f, -1.0f } , { 0.0f, 1.0f } , { 1.0f, -1.0f }
};

/*
 * Gradient directions for 3D.
 * These vectors are based on the midpoints of the 12 edges of a cube.
 * A larger array of random unit length vectors would also do the job,
 * but these 12 (including 4 repeats to make the array length a power
 * of two) work better. They are not random, they are carefully chosen
 * to represent a small, isotropic set of directions.
 */

static float grad3lut[16][3] = {
	{ 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f, 1.0f }, // 12 cube edges
	{ -1.0f, 0.0f, 1.0f }, { 0.0f, -1.0f, 1.0f },
	{ 1.0f, 0.0f, -1.0f }, { 0.0f, 1.0f, -1.0f },
	{ -1.0f, 0.0f, -1.0f }, { 0.0f, -1.0f, -1.0f },
	{ 1.0f, -1.0f, 0.0f }, { 1.0f, 1.0f, 0.0f },
	{ -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, 0.0f },
	{ 1.0f, 0.0f, 1.0f }, { -1.0f, 0.0f, 1.0f }, // 4 repeats to make 16
	{ 0.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f }
};

static float grad4lut[32][4] = {
	{ 0.0f, 1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f, -1.0f, -1.0f }, // 32 tesseract edges
	{ 0.0f, -1.0f, 1.0f, 1.0f }, { 0.0f, -1.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f, 1.0f }, { 0.0f, -1.0f, -1.0f, -1.0f },
	{ 1.0f, 0.0f, 1.0f, 1.0f }, { 1.0f, 0.0f, 1.0f, -1.0f }, { 1.0f, 0.0f, -1.0f, 1.0f }, { 1.0f, 0.0f, -1.0f, -1.0f },
	{ -1.0f, 0.0f, 1.0f, 1.0f }, { -1.0f, 0.0f, 1.0f, -1.0f }, { -1.0f, 0.0f, -1.0f, 1.0f }, { -1.0f, 0.0f, -1.0f, -1.0f },
	{ 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f, 0.0f, -1.0f }, { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, -1.0f, 0.0f, -1.0f },
	{ -1.0f, 1.0f, 0.0f, 1.0f }, { -1.0f, 1.0f, 0.0f, -1.0f }, { -1.0f, -1.0f, 0.0f, 1.0f }, { -1.0f, -1.0f, 0.0f, -1.0f },
	{ 1.0f, 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f, -1.0f, 0.0f }, { 1.0f, -1.0f, 1.0f, 0.0f }, { 1.0f, -1.0f, -1.0f, 0.0f },
	{ -1.0f, 1.0f, 1.0f, 0.0f }, { -1.0f, 1.0f, -1.0f, 0.0f }, { -1.0f, -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, -1.0f, 0.0f }
};

// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
/* TODO: This should not be required, backport it from Bill's GLSL code! */
static unsigned char simplex[64][4] = {
	{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
	{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
	{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
	{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
	{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
	{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
	{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
	{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};

/* --------------------------------------------------------------------- */

/*
 * Helper functions to compute gradients in 1D to 4D
 * and gradients-dot-residualvectors in 2D to 4D.
 */

void grad1( int hash, float *gx ) {
	int h = hash & 15;
	*gx = 1.0f + (h & 7);   // Gradient value is one of 1.0, 2.0, ..., 8.0
	if (h&8) *gx = - *gx;   // Make half of the gradients negative
}

void grad2( int hash, float *gx, float *gy ) {
	int h = hash & 7;
	*gx = grad2lut[h][0];
	*gy = grad2lut[h][1];
	return;
}

void grad3( int hash, float *gx, float *gy, float *gz ) {
	int h = hash & 15;
	*gx = grad3lut[h][0];
	*gy = grad3lut[h][1];
	*gz = grad3lut[h][2];
	return;
}

void grad4( int hash, float *gx, float *gy, float *gz, float *gw) {
	int h = hash & 31;
	*gx = grad4lut[h][0];
	*gy = grad4lut[h][1];
	*gz = grad4lut[h][2];
	*gw = grad4lut[h][3];
	return;
}

/** 1D simplex noise with derivative.
 * If the last argument is not null, the analytic derivative
 * is also calculated.
 */
float sdnoise1( float x, int px, float *dnoise_dx)
{
	int i0 = FASTFLOOR(x);
	int i1 = i0 + 1;
	float x0 = x - i0;
	float x1 = x0 - 1.0f;

	float gx0, gx1;
	float n0, n1;
	float t20, t40, t21, t41;

	float x20 = x0*x0;
	float t0 = 1.0f - x20;
	//  if(t0 < 0.0f) t0 = 0.0f; // Never happens for 1D: x0<=1 always
	t20 = t0 * t0;
	t40 = t20 * t20;
	grad1(perm[i0 % px], &gx0);
	n0 = t40 * gx0 * x0;

	float x21 = x1*x1;
	float t1 = 1.0f - x21;
	//  if(t1 < 0.0f) t1 = 0.0f; // Never happens for 1D: |x1|<=1 always
	t21 = t1 * t1;
	t41 = t21 * t21;
	grad1(perm[i1 % px], &gx1);
	n1 = t41 * gx1 * x1;

	/* Compute derivative according to:
	 *  *dnoise_dx = -8.0f * t20 * t0 * x0 * (gx0 * x0) + t40 * gx0;
	 *  *dnoise_dx += -8.0f * t21 * t1 * x1 * (gx1 * x1) + t41 * gx1;
	 */
	*dnoise_dx = t20 * t0 * gx0 * x20;
	*dnoise_dx += t21 * t1 * gx1 * x21;
	*dnoise_dx *= -8.0f;
	*dnoise_dx += t40 * gx0 + t41 * gx1;
	*dnoise_dx *= 0.25f; /* Scale derivative to match the noise scaling */

	// The maximum value of this noise is 8*(3/4)^4 = 2.53125
	// A factor of 0.395 would scale to fit exactly within [-1,1], but
	// to better match classic Perlin noise, we scale it down some more.
	return 0.25f * (n0 + n1);
}

float sdnoise1s( float x, float *dnoise_dx)
{
	return sdnoise1(x, 256, dnoise_dx);
}

/* Skewing factors for 2D simplex grid:
 * F2 = 0.5*(sqrt(3.0)-1.0)
 * G2 = (3.0-Math.sqrt(3.0))/6.0
 */
#define F2 0.366025403
#define G2 0.211324865

/** 2D simplex noise with derivatives.
 * If the last two arguments are not null, the analytic derivative
 * (the 2D gradient of the scalar noise field) is also calculated.
 */
float sdnoise2( float x, float y, int px, int py, float *dnoise_dx, float *dnoise_dy )
{
	float n0, n1, n2; /* Noise contributions from the three simplex corners */
	float gx0, gy0, gx1, gy1, gx2, gy2; /* Gradients at simplex corners */

	/* Skew the input space to determine which simplex cell we're in */
	float s = ( x + y ) * F2; /* Hairy factor for 2D */
	float xs = x + s;
	float ys = y + s;
	int i = FASTFLOOR( xs );
	int j = FASTFLOOR( ys );

	float t = ( float ) ( i + j ) * G2;
	float X0 = i - t; /* Unskew the cell origin back to (x,y) space */
	float Y0 = j - t;
	float x0 = x - X0; /* The x,y distances from the cell origin */
	float y0 = y - Y0;

	/* For the 2D case, the simplex shape is an equilateral triangle.
	 * Determine which simplex we are in. */
	int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
	if( x0 > y0 ) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
	else { i1 = 0; j1 = 1; }      /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */

	/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
	 * a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
	 * c = (3-sqrt(3))/6   */
	float x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
	float y1 = y0 - j1 + G2;
	float x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
	float y2 = y0 - 1.0f + 2.0f * G2;

	/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
	int ii = i % px;
	int jj = j % py;

	/* Calculate the contribution from the three corners */
	float t0 = 0.5f - x0 * x0 - y0 * y0;
	float t20, t40;
	if( t0 < 0.0f ) t40 = t20 = t0 = n0 = gx0 = gy0 = 0.0f; /* No influence */
	else {
		grad2( perm[ii + perm[jj]], &gx0, &gy0 );
		t20 = t0 * t0;
		t40 = t20 * t20;
		n0 = t40 * ( gx0 * x0 + gy0 * y0 );
	}

	float t1 = 0.5f - x1 * x1 - y1 * y1;
	float t21, t41;
	if( t1 < 0.0f ) t21 = t41 = t1 = n1 = gx1 = gy1 = 0.0f; /* No influence */
	else {
		grad2( perm[ii + i1 + perm[jj + j1]], &gx1, &gy1 );
		t21 = t1 * t1;
		t41 = t21 * t21;
		n1 = t41 * ( gx1 * x1 + gy1 * y1 );
	}

	float t2 = 0.5f - x2 * x2 - y2 * y2;
	float t22, t42;
	if( t2 < 0.0f ) t42 = t22 = t2 = n2 = gx2 = gy2 = 0.0f; /* No influence */
	else {
		grad2( perm[ii + 1 + perm[jj + 1]], &gx2, &gy2 );
		t22 = t2 * t2;
		t42 = t22 * t22;
		n2 = t42 * ( gx2 * x2 + gy2 * y2 );
	}

	/* Add contributions from each corner to get the final noise value.
	 * The result is scaled to return values in the interval [-1,1]. */
	float noise = 40.0f * ( n0 + n1 + n2 );

	/* Compute derivative, if requested by supplying non-null pointers
	 * for the last two arguments */
	if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) )
	{
		/*  A straight, unoptimised calculation would be like:
		 *    *dnoise_dx = -8.0f * t20 * t0 * x0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gx0;
		 *    *dnoise_dy = -8.0f * t20 * t0 * y0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gy0;
		 *    *dnoise_dx += -8.0f * t21 * t1 * x1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gx1;
		 *    *dnoise_dy += -8.0f * t21 * t1 * y1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gy1;
		 *    *dnoise_dx += -8.0f * t22 * t2 * x2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gx2;
		 *    *dnoise_dy += -8.0f * t22 * t2 * y2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gy2;
		 */
		float temp0 = t20 * t0 * ( gx0* x0 + gy0 * y0 );
		*dnoise_dx = temp0 * x0;
		*dnoise_dy = temp0 * y0;
		float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 );
		*dnoise_dx += temp1 * x1;
		*dnoise_dy += temp1 * y1;
		float temp2 = t22 * t2 * ( gx2* x2 + gy2 * y2 );
		*dnoise_dx += temp2 * x2;
		*dnoise_dy += temp2 * y2;
		*dnoise_dx *= -8.0f;
		*dnoise_dy *= -8.0f;
		*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2;
		*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2;
		*dnoise_dx *= 40.0f; /* Scale derivative to match the noise scaling */
		*dnoise_dy *= 40.0f;
	}
	return noise;
}

float sdnoise2s( float x, float y, float *dnoise_dx, float *dnoise_dy )
{
	return sdnoise2( x, y, 256, 256, dnoise_dx, dnoise_dy );
}

/* Skewing factors for 3D simplex grid:
 * F3 = 1/3
 * G3 = 1/6 */
#define F3 0.333333333
#define G3 0.166666667


/** 3D simplex noise with derivatives.
 * If the last tthree arguments are not null, the analytic derivative
 * (the 3D gradient of the scalar noise field) is also calculated.
 */
float sdnoise3( float x, float y, float z, int px, int py, int pz,
	float *dnoise_dx, float *dnoise_dy, float *dnoise_dz )
{
	float n0, n1, n2, n3; /* Noise contributions from the four simplex corners */
	float noise;          /* Return value */
	float gx0, gy0, gz0, gx1, gy1, gz1; /* Gradients at simplex corners */
	float gx2, gy2, gz2, gx3, gy3, gz3;

	/* Skew the input space to determine which simplex cell we're in */
	float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
	float xs = x+s;
	float ys = y+s;
	float zs = z+s;
	int i = FASTFLOOR(xs);
	int j = FASTFLOOR(ys);
	int k = FASTFLOOR(zs);

	float t = (float)(i+j+k)*G3;
	float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
	float Y0 = j-t;
	float Z0 = k-t;
	float x0 = x-X0; /* The x,y,z distances from the cell origin */
	float y0 = y-Y0;
	float z0 = z-Z0;

	/* For the 3D case, the simplex shape is a slightly irregular tetrahedron.
	 * Determine which simplex we are in. */
	int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
	int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */

	/* TODO: This code would benefit from a backport from the GLSL version! */
	if(x0>=y0) {
		if(y0>=z0)
		{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
		else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
		else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
	}
	else { // x0<y0
		if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
		else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
		else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
	}

	/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
	 * a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
	 * a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
	 * c = 1/6.   */

	float x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
	float y1 = y0 - j1 + G3;
	float z1 = z0 - k1 + G3;
	float x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */
	float y2 = y0 - j2 + 2.0f * G3;
	float z2 = z0 - k2 + 2.0f * G3;
	float x3 = x0 - 1.0f + 3.0f * G3; /* Offsets for last corner in (x,y,z) coords */
	float y3 = y0 - 1.0f + 3.0f * G3;
	float z3 = z0 - 1.0f + 3.0f * G3;

	/* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
	int ii = i % px;
	int jj = j % py;
	int kk = k % pz;

	/* Calculate the contribution from the four corners */
	float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
	float t20, t40;
	if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = 0.0f;
	else {
		grad3( perm[ii + perm[jj + perm[kk]]], &gx0, &gy0, &gz0 );
		t20 = t0 * t0;
		t40 = t20 * t20;
		n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
	}

	float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
	float t21, t41;
	if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = 0.0f;
	else {
		grad3( perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], &gx1, &gy1, &gz1 );
		t21 = t1 * t1;
		t41 = t21 * t21;
		n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
	}

	float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
	float t22, t42;
	if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = 0.0f;
	else {
		grad3( perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], &gx2, &gy2, &gz2 );
		t22 = t2 * t2;
		t42 = t22 * t22;
		n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
	}

	float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
	float t23, t43;
	if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = 0.0f;
	else {
		grad3( perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], &gx3, &gy3, &gz3 );
		t23 = t3 * t3;
		t43 = t23 * t23;
		n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
	}

	/*  Add contributions from each corner to get the final noise value.
	 * The result is scaled to return values in the range [-1,1] */
	noise = 28.0f * (n0 + n1 + n2 + n3);

	/* Compute derivative, if requested by supplying non-null pointers
	 * for the last three arguments */
	if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ))
	{
		/*  A straight, unoptimised calculation would be like:
		 *     *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gx0;
		 *    *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gy0;
		 *    *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gz0;
		 *    *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gx1;
		 *    *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gy1;
		 *    *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gz1;
		 *    *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gx2;
		 *    *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gy2;
		 *    *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gz2;
		 *    *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gx3;
		 *    *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gy3;
		 *    *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gz3;
		 */
		float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
		*dnoise_dx = temp0 * x0;
		*dnoise_dy = temp0 * y0;
		*dnoise_dz = temp0 * z0;
		float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
		*dnoise_dx += temp1 * x1;
		*dnoise_dy += temp1 * y1;
		*dnoise_dz += temp1 * z1;
		float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
		*dnoise_dx += temp2 * x2;
		*dnoise_dy += temp2 * y2;
		*dnoise_dz += temp2 * z2;
		float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
		*dnoise_dx += temp3 * x3;
		*dnoise_dy += temp3 * y3;
		*dnoise_dz += temp3 * z3;
		*dnoise_dx *= -8.0f;
		*dnoise_dy *= -8.0f;
		*dnoise_dz *= -8.0f;
		*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3;
		*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3;
		*dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3;
		*dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */
		*dnoise_dy *= 28.0f;
		*dnoise_dz *= 28.0f;
	}
	return noise;
}

float sdnoise3s( float x, float y, float z, float *dnoise_dx, float *dnoise_dy, float *dnoise_dz )
{
	return sdnoise3(x, y, z, 256, 256, 256, dnoise_dx, dnoise_dy, dnoise_dz);
}

// The skewing and unskewing factors are hairy again for the 4D case
#define F4 0.309016994 // F4 = (Math.sqrt(5.0)-1.0)/4.0
#define G4 0.138196601 // G4 = (5.0-Math.sqrt(5.0))/20.0

/** 4D simplex noise with derivatives.
 * If the last four arguments are not null, the analytic derivative
 * (the 4D gradient of the scalar noise field) is also calculated.
 */
float sdnoise4( float x, float y, float z, float w,
	int px, int py, int pz, int pw,
	float *dnoise_dx, float *dnoise_dy,
	float *dnoise_dz, float *dnoise_dw)
{
	float n0, n1, n2, n3, n4; // Noise contributions from the five corners
	float noise; // Return value
	float gx0, gy0, gz0, gw0, gx1, gy1, gz1, gw1; /* Gradients at simplex corners */
	float gx2, gy2, gz2, gw2, gx3, gy3, gz3, gw3, gx4, gy4, gz4, gw4;
	float t20, t21, t22, t23, t24;
	float t40, t41, t42, t43, t44;

	// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
	float s = (x + y + z + w) * F4; // Factor for 4D skewing
	float xs = x + s;
	float ys = y + s;
	float zs = z + s;
	float ws = w + s;
	int i = FASTFLOOR(xs);
	int j = FASTFLOOR(ys);
	int k = FASTFLOOR(zs);
	int l = FASTFLOOR(ws);

	float t = (i + j + k + l) * G4; // Factor for 4D unskewing
	float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
	float Y0 = j - t;
	float Z0 = k - t;
	float W0 = l - t;

	float x0 = x - X0;  // The x,y,z,w distances from the cell origin
	float y0 = y - Y0;
	float z0 = z - Z0;
	float w0 = w - W0;

	// For the 4D case, the simplex is a 4D shape I won't even try to describe.
	// To find out which of the 24 possible simplices we're in, we need to
	// determine the magnitude ordering of x0, y0, z0 and w0.
	// The method below is a reasonable way of finding the ordering of x,y,z,w
	// and then find the correct traversal order for the simplex were in.
	// First, six pair-wise comparisons are performed between each possible pair
	// of the four coordinates, and then the results are used to add up binary
	// bits for an integer index into a precomputed lookup table, simplex[].
	int c1 = (x0 > y0) ? 32 : 0;
	int c2 = (x0 > z0) ? 16 : 0;
	int c3 = (y0 > z0) ? 8 : 0;
	int c4 = (x0 > w0) ? 4 : 0;
	int c5 = (y0 > w0) ? 2 : 0;
	int c6 = (z0 > w0) ? 1 : 0;
	int c = c1 | c2 | c3 | c4 | c5 | c6; // '|' is mostly faster than '+'

	int i1, j1, k1, l1; // The integer offsets for the second simplex corner
	int i2, j2, k2, l2; // The integer offsets for the third simplex corner
	int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner

	// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
	// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
	// impossible. Only the 24 indices which have non-zero entries make any sense.
	// We use a thresholding to set the coordinates in turn from the largest magnitude.
	// The number 3 in the "simplex" array is at the position of the largest coordinate.
	i1 = simplex[c][0]>=3 ? 1 : 0;
	j1 = simplex[c][1]>=3 ? 1 : 0;
	k1 = simplex[c][2]>=3 ? 1 : 0;
	l1 = simplex[c][3]>=3 ? 1 : 0;
	// The number 2 in the "simplex" array is at the second largest coordinate.
	i2 = simplex[c][0]>=2 ? 1 : 0;
	j2 = simplex[c][1]>=2 ? 1 : 0;
	k2 = simplex[c][2]>=2 ? 1 : 0;
	l2 = simplex[c][3]>=2 ? 1 : 0;
	// The number 1 in the "simplex" array is at the second smallest coordinate.
	i3 = simplex[c][0]>=1 ? 1 : 0;
	j3 = simplex[c][1]>=1 ? 1 : 0;
	k3 = simplex[c][2]>=1 ? 1 : 0;
	l3 = simplex[c][3]>=1 ? 1 : 0;
	// The fifth corner has all coordinate offsets = 1, so no need to look that up.

	float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
	float y1 = y0 - j1 + G4;
	float z1 = z0 - k1 + G4;
	float w1 = w0 - l1 + G4;
	float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords
	float y2 = y0 - j2 + 2.0f * G4;
	float z2 = z0 - k2 + 2.0f * G4;
	float w2 = w0 - l2 + 2.0f * G4;
	float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords
	float y3 = y0 - j3 + 3.0f * G4;
	float z3 = z0 - k3 + 3.0f * G4;
	float w3 = w0 - l3 + 3.0f * G4;
	float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords
	float y4 = y0 - 1.0f + 4.0f * G4;
	float z4 = z0 - 1.0f + 4.0f * G4;
	float w4 = w0 - 1.0f + 4.0f * G4;

	// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
	int ii = i % px;
	int jj = j % py;
	int kk = k % pz;
	int ll = l % pw;

	// Calculate the contribution from the five corners
	float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
	if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = gw0 = 0.0f;
	else {
		t20 = t0 * t0;
		t40 = t20 * t20;
		grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], &gx0, &gy0, &gz0, &gw0);
		n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
	}

	float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
	if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = gw1 = 0.0f;
	else {
		t21 = t1 * t1;
		t41 = t21 * t21;
		grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], &gx1, &gy1, &gz1, &gw1);
		n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
	}

	float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
	if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = gw2 = 0.0f;
	else {
		t22 = t2 * t2;
		t42 = t22 * t22;
		grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], &gx2, &gy2, &gz2, &gw2);
		n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
	}

	float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
	if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = gw3 = 0.0f;
	else {
		t23 = t3 * t3;
		t43 = t23 * t23;
		grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], &gx3, &gy3, &gz3, &gw3);
		n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
	}

	float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
	if(t4 < 0.0f) n4 = t4 = t24 = t44 = gx4 = gy4 = gz4 = gw4 = 0.0f;
	else {
		t24 = t4 * t4;
		t44 = t24 * t24;
		grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], &gx4, &gy4, &gz4, &gw4);
		n4 = t44 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
	}

	// Sum up and scale the result to cover the range [-1,1]
	noise = 27.0f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!

	/* Compute derivative, if requested by supplying non-null pointers
	 * for the last four arguments */
	if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ) && ( dnoise_dw != 0 ) )
	{
		/*  A straight, unoptimised calculation would be like:
		 *     *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gx0;
		 *    *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gy0;
		 *    *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gz0;
		 *    *dnoise_dw = -8.0f * t20 * t0 * w0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gw0;
		 *    *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gx1;
		 *    *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gy1;
		 *    *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gz1;
		 *    *dnoise_dw = -8.0f * t21 * t1 * w1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gw1;
		 *    *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gx2;
		 *    *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gy2;
		 *    *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gz2;
		 *    *dnoise_dw += -8.0f * t22 * t2 * w2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gw2;
		 *    *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gx3;
		 *    *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gy3;
		 *    *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gz3;
		 *    *dnoise_dw += -8.0f * t23 * t3 * w3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gw3;
		 *    *dnoise_dx += -8.0f * t24 * t4 * x4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gx4;
		 *    *dnoise_dy += -8.0f * t24 * t4 * y4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gy4;
		 *    *dnoise_dz += -8.0f * t24 * t4 * z4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gz4;
		 *    *dnoise_dw += -8.0f * t24 * t4 * w4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gw4;
		 */
		float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
		*dnoise_dx = temp0 * x0;
		*dnoise_dy = temp0 * y0;
		*dnoise_dz = temp0 * z0;
		*dnoise_dw = temp0 * w0;
		float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
		*dnoise_dx += temp1 * x1;
		*dnoise_dy += temp1 * y1;
		*dnoise_dz += temp1 * z1;
		*dnoise_dw += temp1 * w1;
		float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
		*dnoise_dx += temp2 * x2;
		*dnoise_dy += temp2 * y2;
		*dnoise_dz += temp2 * z2;
		*dnoise_dw += temp2 * w2;
		float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
		*dnoise_dx += temp3 * x3;
		*dnoise_dy += temp3 * y3;
		*dnoise_dz += temp3 * z3;
		*dnoise_dw += temp3 * w3;
		float temp4 = t24 * t4 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
		*dnoise_dx += temp4 * x4;
		*dnoise_dy += temp4 * y4;
		*dnoise_dz += temp4 * z4;
		*dnoise_dw += temp4 * w4;
		*dnoise_dx *= -8.0f;
		*dnoise_dy *= -8.0f;
		*dnoise_dz *= -8.0f;
		*dnoise_dw *= -8.0f;
		*dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3 + t44 * gx4;
		*dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3 + t44 * gy4;
		*dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3 + t44 * gz4;
		*dnoise_dw += t40 * gw0 + t41 * gw1 + t42 * gw2 + t43 * gw3 + t44 * gw4;

		*dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */
		*dnoise_dy *= 28.0f;
		*dnoise_dz *= 28.0f;
		*dnoise_dw *= 28.0f;
	}

	return noise;
}

float sdnoise4s( float x, float y, float z, float w,
	float *dnoise_dx, float *dnoise_dy,
	float *dnoise_dz, float *dnoise_dw)
{
	return sdnoise4( x, y, z, w,
		256, 256, 256, 256,
		dnoise_dx, dnoise_dy,
		dnoise_dz, dnoise_dw);
}