fov.h
13.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
TE4 - T-Engine 4
Copyright (C) 2009 - 2018 Nicolas Casalini
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Nicolas Casalini "DarkGod"
darkgod@te4.org
*/
/**
* \mainpage Field of View Library
*
* \section about About
*
* This is a C library which implements a course-grained lighting
* algorithm suitable for tile-based games such as roguelikes.
*
* \section copyright Copyright
*
* \verbinclude COPYING
*
* \section thanks Thanks
*
* Thanks to Björn Bergström
* <bjorn.bergstrom@hyperisland.se> for the algorithm.
*
*/
/**
* \file fov.h
* Field-of-view algorithm for dynamically casting light/shadow on a
* low resolution 2D raster.
*/
#ifndef LIBFOV_HEADER
#define LIBFOV_HEADER
#include <stdbool.h>
#include <stddef.h>
/* Floating point espsilon to guarantee smooth floating point transitions and behavior in an integer grid.
* There were no, and are no, floating point precision guarantees for maps greater than 1024x1024. Use double precision if desired.
* Nevertheless, map sizes greater than 10000x10000 should still behave reasonably.
*/
#define GRID_EPSILON 1.0e-5f
#ifdef __cplusplus
extern "C" {
#endif
/** Eight-way directions. */
/* Note: this has pretty much been deprecated */
typedef enum {
FOV_EAST = 0,
FOV_NORTHEAST,
FOV_NORTH,
FOV_NORTHWEST,
FOV_WEST,
FOV_SOUTHWEST,
FOV_SOUTH,
FOV_SOUTHEAST
} fov_direction_type;
/** The opposite direction to that given. */
/* Note: this has pretty much been deprecated */
#define fov_direction_opposite(direction) ((fov_direction_type)(((direction)+4)&0x7))
/** Values for the shape setting. Distance Y (given x, radius r) Square distance check */
typedef enum {
FOV_SHAPE_CIRCLE_ROUND, /* floor(sqrt(x^2 + y^2) + 0.5) sqrt(r^2 + r - x^2) x^2 + y^2 <= r^2 + r */
FOV_SHAPE_CIRCLE_FLOOR, /* floor(sqrt(x^2 + y^2)) sqrt(r^2 + 2*r - x^2) x^2 + y^2 <= r^2 + 2*r */
FOV_SHAPE_CIRCLE_CEIL, /* ceil(sqrt(x^2 + y^2)) sqrt(r^2 - x^2) x^2 + y^2 <= r^2 */
FOV_SHAPE_CIRCLE_PLUS1, /* floor(d + 1 - 1.0/d) sqrt(r^2 + 1 - x^2) x^2 + y^2 <= r^2 + 1 */
FOV_SHAPE_OCTAGON, /* max(x, y) + min(x, y)/2 2*(r - x) + 1 */
FOV_SHAPE_DIAMOND, /* x + y r - x */
FOV_SHAPE_SQUARE, /* max(x, y) r */
FOV_SHAPE_HEX
} fov_shape_type;
typedef enum {
FOV_ALGO_RECURSIVE_SHADOW, /* Recursive shadowcasting (standard algorithm) */
FOV_ALGO_LARGE_ASS, /* Large Actor recurSive Shadowcasting */
/*FOV_ALGO_SAVVY,*/ /* Symmetric And Variable permissiveness */
/*FOV_ALGO_THE_LAST*/ /* Tiger_eye's Heteromorphic Efficient Large Actor Symmetric Targeting */
} fov_algo_type;
/* FOV_BUFFER_SIZE must be a power of two. Could probably get by with 1024,
but certainly not with 512. 2048 is actually exceedingly conservative.
*/
#define FOV_BUFFER_SIZE 2048
typedef struct {
int index;
int prev_len;
float buffer[FOV_BUFFER_SIZE];
} fov_buffer_type;
typedef struct {
/** Opacity test callback. */
/*@null@*/ bool (*opaque)(void *map, int x, int y);
/** Lighting callback to set lighting on a map tile. */
/*@null@*/ void (*apply)(void *map, int x, int y, int dx, int dy, int radius, void *src);
/** A measure of how much an opaque tile blocks a tile. 0.5 for square, 0 for diamond shape. Shapes extend to the edge of the tile. */
float permissiveness;
/** A measure of the size of the source actor. 0 for smallest, 0.5 for full-width diamond. Not applicable to all algorithms. */
float actor_vision_size;
/** Algorithm setting. */
fov_algo_type algorithm;
/** Shape setting. */
fov_shape_type shape;
/** Data buffer */
fov_buffer_type *buffer_data;
/** \endcond */
} fov_settings_type;
/** struct of calculated data for field of vision lines */
typedef struct {
/** x from which the line originates */
int source_x;
/** y from which the line originates */
int source_y;
/** Parametrization variable used to count the "steps" of the line */
int t;
/** Parametrization value of t for where line is blocked, if applicable */
int block_t;
/** Parametrization value of t for where line reaches destination tile */
int dest_t;
/** Position from within the tile that the line originates */
float start_x;
/** Position from within the tile that the line originates */
float start_y;
/** Size of single step in x direction, so for t'th step, delta_x = t*step_x */
float step_x;
/** Size of single step in y direction, so for t'th step, delta_y = t*step_y */
float step_y;
/** Epsilon used to round toward or away from cardinal directions based on adjacent obstructed grids */
float eps_x;
/** Epsilon used to round toward or away from cardinal directions based on adjacent obstructed grids */
float eps_y;
/** Whether or not the line is blocked */
bool is_blocked;
/** Whether the line should begin at the destination (and continue away from the source) */
bool start_at_end;
} fov_line_data;
/** struct of calculated data for field of vision lines */
typedef struct {
/** Parametrization variable used to count the "steps" of the line */
int t;
/** Parametrization value of t for where line is blocked, if applicable */
int block_t;
/** Parametrization value of t for where line reaches destination tile */
int dest_t;
/** "real" x from which the line originates */
float source_x;
/** "real" y from which the line originates */
float source_y;
/** Size of single step in x direction, so for t'th step, delta_x = t*step_x */
float step_x;
/** Size of single step in y direction, so for t'th step, delta_y = t*step_y */
float step_y;
/** Epsilon used to round toward the correct chirality or based on adjacent obstructed grids */
float eps_x;
/** Epsilon used to round toward the correct chirality or based on adjacent obstructed grids */
float eps_y;
/** Whether or not the line is blocked */
bool is_blocked;
/** Whether the line should begin at the destination (and continue away from the source) */
bool start_at_end;
} hex_fov_line_data;
/* set global parameters */
void fov_set_permissiveness(float value);
void fov_set_actor_vision_size(float value);
void fov_set_algorithm(fov_algo_type value);
void fov_set_vision_shape(fov_shape_type value);
/* get global parameters */
float fov_get_permissiveness();
float fov_get_actor_vision_size();
fov_algo_type fov_get_algorithm();
fov_shape_type fov_get_vision_shape();
/**
* Set all the default options. You must call this option when you
* create a new settings data structure.
*
* These settings are the defaults used:
*
* - shape: FOV_SHAPE_CIRCLE_PRECALCULATE
*
* Callbacks still need to be set up after calling this function.
*
* \param settings Pointer to data structure containing settings.
*/
void fov_settings_init(fov_settings_type *settings);
/**
* Set the shape of the field of view.
*
* \param settings Pointer to data structure containing settings.
* \param value One of the following values, where R is the radius:
*
* - FOV_SHAPE_CIRCLE_PRECALCULATE \b (default): Limit the FOV to a
* circle with radius R by precalculating, which consumes more memory
* at the rate of 4*(R+2) bytes per R used in calls to fov_circle.
* Each radius is only calculated once so that it can be used again.
* Use fov_free() to free this precalculated data's memory.
*
* - FOV_SHAPE_CIRCLE: Limit the FOV to a circle with radius R by
* calculating on-the-fly.
*
* - FOV_SHAPE_OCTOGON: Limit the FOV to an octogon with maximum radius R.
*
* - FOV_SHAPE_SQUARE: Limit the FOV to an R*R square.
*/
/* void fov_settings_set_shape(fov_settings_type *settings, fov_shape_type value); */
/**
* Set the function used to test whether a map tile is opaque.
*
* \param settings Pointer to data structure containing settings.
* \param f The function called to test whether a map tile is opaque.
*/
void fov_settings_set_opacity_test_function(fov_settings_type *settings, bool (*f)(void *map, int x, int y));
/**
* Set the function used to apply lighting to a map tile.
*
* \param settings Pointer to data structure containing settings.
* \param f The function called to apply lighting to a map tile.
*/
void fov_settings_set_apply_lighting_function(fov_settings_type *settings, void (*f)(void *map, int x, int y, int dx, int dy, int radius, void *src));
/**
* Calculate a full circle field of view from a source at (x,y).
*
* \param settings Pointer to data structure containing settings.
* \param map Pointer to map data structure to be passed to callbacks.
* \param source Pointer to data structure holding source of light.
* \param source_x x-axis coordinate from which to start.
* \param source_y y-axis coordinate from which to start.
* \param radius Euclidean distance from (x,y) after which to stop.
*/
void fov_circle(fov_settings_type *settings, void *map, void *source,
int source_x, int source_y, int radius
);
/**
* Calculate a field of view from source at (x,y), pointing
* in the given direction and with the given angle. The larger
* the angle, the wider, "less focused" the beam. Each side of the
* line pointing in the direction from the source will be half the
* angle given such that the angle specified will be represented on
* the raster.
*
* \param settings Pointer to data structure containing settings.
* \param map Pointer to map data structure to be passed to callbacks.
* \param source Pointer to data structure holding source of light.
* \param source_x x-axis coordinate from which to start.
* \param source_y y-axis coordinate from which to start.
* \param radius Euclidean distance from (x,y) after which to stop.
* \param direction One of eight directions the beam of light can point.
* \param angle The angle at the base of the beam of light, in degrees.
*/
void fov_beam(fov_settings_type *settings, void *map, void *source,
int source_x, int source_y, int radius,
fov_direction_type direction, float angle
);
/**
* Calculate a field of view from source at (x,y), pointing
* in the given direction (in dx, dy) and with the given angle. The larger
* the angle, the wider, "less focused" the beam. Each side of the
* line pointing in the direction from the source will be half the
* angle given such that the angle specified will be represented on
* the raster.
*
* \param settings Pointer to data structure containing settings.
* \param map Pointer to map data structure to be passed to callbacks.
* \param source Pointer to data structure holding source of light.
* \param source_x x-axis coordinate from which to start.
* \param source_y y-axis coordinate from which to start.
* \param radius Euclidean distance from (x,y) after which to stop.
* \param dx Beam direction, delta x
* \param dy Beam direction, delta y
* \param beam_angle The angle at the base of the beam of light, in degrees.
*/
void fov_beam_any_angle(fov_settings_type *settings, void *map, void *source,
int source_x, int source_y, int radius, int sx, int sy,
float dx, float dy, float beam_angle
);
/**
* Calculate a line based on field of view (or whatever the "opaque" function)
* from source to destination (x, y). This will avoid opaque tiles if possible.
* If an unobstructed line to destination tile isn't found, then default to a
* bresenham line.
*
* \param settings Pointer to data structure containing settings.
* \param map Pointer to map data structure to be passed to callbacks.
* \param source Pointer to data structure holding source of light.
* \param line Pointer to data structure to store line information.
* \param source_x x-axis coordinate from which to start.
* \param source_y y-axis coordinate from which to start.
* \param dest_x x-axis coordinate from which to end.
* \param dest_y y-axis coordinate from which to end.
* \param start_at_end if true, the line will begin at the destination (x, y) and continue away from source (x, y)
*/
void fov_create_los_line(fov_settings_type *settings, void *map, void *source,
fov_line_data *line,
int source_x, int source_y,
int dest_x, int dest_y,
bool start_at_end
);
void hex_fov_create_los_line(fov_settings_type *settings, void *map, void *source,
hex_fov_line_data *line,
int source_x, int source_y,
int dest_x, int dest_y,
bool start_at_end
);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif