noise_c.c 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
#if 1
/*
* libtcod 1.5.0
* Copyright (c) 2008,2009,2010 Jice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in the
*       documentation and/or other materials provided with the distribution.
*     * The name of Jice may not be used to endorse or promote products
*       derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Jice ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Jice BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "SFMT.h"
#include "libtcod.h"
#include "noise.h"

#define WAVELET_TILE_SIZE 32
#define WAVELET_ARAD 16

#define SIMPLEX_SCALE 0.5f
#define WAVELET_SCALE 2.0f

typedef struct {
	int ndim;
	unsigned char map[256]; // Randomized map of indexes into buffer
	float buffer[256][TCOD_NOISE_MAX_DIMENSIONS]; 	// Random 256 x ndim buffer
	// fractal stuff
	float H;
	float lacunarity;
	float exponent[TCOD_NOISE_MAX_OCTAVES];
	float *waveletTileData;
} perlin_data_t;

static float lattice( perlin_data_t *data, int ix, float fx, int iy, float fy, int iz, float fz, int iw, float fw)
{
	int n[4] = {ix, iy, iz, iw};
	float f[4] = {fx, fy, fz, fw};
	int nIndex = 0;
	int i;
	float value = 0;
	for(i=0; i<data->ndim; i++)
		nIndex = data->map[(nIndex + n[i]) & 0xFF];
	for(i=0; i<data->ndim; i++)
		value += data->buffer[nIndex][i] * f[i];
	return value;
}

#define DEFAULT_SEED 0x15687436
#define DELTA				1e-6f
#define SWAP(a, b, t)		t = a; a = b; b = t

#define FLOOR(a) ((a)> 0 ? ((int)a) : (((int)a)-1) )
#define CUBIC(a)	( a * a * (3 - 2*a) )

static void normalize(perlin_data_t *data, float *f)
{
	float magnitude = 0;
	int i;
	for(i=0; i<data->ndim; i++)
		magnitude += f[i]*f[i];
	magnitude = 1 / sqrtf(magnitude);
	for(i=0; i<data->ndim; i++)
		f[i] *= magnitude;
}


TCOD_noise_t TCOD_noise_new(int ndim, float hurst, float lacunarity)
{
	perlin_data_t *data=(perlin_data_t *)calloc(sizeof(perlin_data_t),1);
	int i, j;
	unsigned char tmp;
	float f = 1;
	data->ndim = ndim;
	for(i=0; i<256; i++)
	{
		data->map[i] = (unsigned char)i;
		for(j=0; j<data->ndim; j++)
			data->buffer[i][j] = genrand_real(-0.5, 0.5);
		normalize(data,data->buffer[i]);
	}

	while(--i)
	{
		j = rand_div(256);
		SWAP(data->map[i], data->map[j], tmp);
	}

	data->H = hurst;
	data->lacunarity = lacunarity;
	for(i=0; i<TCOD_NOISE_MAX_OCTAVES; i++)
	{
		//exponent[i] = powf(f, -H);
		data->exponent[i] = 1.0f / f;
		f *= lacunarity;
	}
	return (TCOD_noise_t)data;
}

float TCOD_noise_perlin( TCOD_noise_t noise, float *f )
{
	perlin_data_t *data=(perlin_data_t *)noise;
	int n[TCOD_NOISE_MAX_DIMENSIONS];			// Indexes to pass to lattice function
	int i;
	float r[TCOD_NOISE_MAX_DIMENSIONS];		// Remainders to pass to lattice function
	float w[TCOD_NOISE_MAX_DIMENSIONS];		// Cubic values to pass to interpolation function
	float value;

	for(i=0; i<data->ndim; i++)
	{
		n[i] = FLOOR(f[i]);
		r[i] = f[i] - n[i];
		w[i] = CUBIC(r[i]);
	}

	switch(data->ndim)
	{
		case 1:
			value = LERP(lattice(data,n[0], r[0],0,0,0,0,0,0),
						  lattice(data,n[0]+1, r[0]-1,0,0,0,0,0,0),
						  w[0]);
			break;
		case 2:
			value = LERP(LERP(lattice(data,n[0], r[0], n[1], r[1],0,0,0,0),
							   lattice(data,n[0]+1, r[0]-1, n[1], r[1],0,0,0,0),
							   w[0]),
						  LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1,0,0,0,0),
							   lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1,0,0,0,0),
							   w[0]),
						  w[1]);
			break;
		case 3:
			value = LERP(LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2], r[2],0,0),
									lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2], r[2],0,0),
									w[0]),
							   LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2], r[2],0,0),
									lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2], r[2],0,0),
									w[0]),
							   w[1]),
						  LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2]+1, r[2]-1,0,0),
									lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2]+1, r[2]-1,0,0),
									w[0]),
							   LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2]+1, r[2]-1,0,0),
									lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2]+1, r[2]-1,0,0),
									w[0]),
							   w[1]),
						  w[2]);
			break;
		case 4:
		default:
			value = LERP(LERP(LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2], r[2], n[3], r[3]),
										 lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2], r[2], n[3], r[3]),
										 w[0]),
									LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2], r[2], n[3], r[3]),
										 lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2], r[2], n[3], r[3]),
										 w[0]),
									w[1]),
									LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2]+1, r[2]-1, n[3], r[3]),
										 lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2]+1, r[2]-1, n[3], r[3]),
										 w[0]),
									LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2]+1, r[2]-1,0,0),
										 lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2]+1, r[2]-1, n[3], r[3]),
										 w[0]),
									w[1]),
							   w[2]),
						  LERP(LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2], r[2], n[3]+1, r[3]-1),
										 lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2], r[2], n[3]+1, r[3]-1),
										 w[0]),
									LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2], r[2], n[3]+1, r[3]-1),
										 lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2], r[2], n[3]+1, r[3]-1),
										 w[0]),
									w[1]),
									LERP(LERP(lattice(data,n[0], r[0], n[1], r[1], n[2]+1, r[2]-1, n[3]+1, r[3]-1),
										 lattice(data,n[0]+1, r[0]-1, n[1], r[1], n[2]+1, r[2]-1, n[3]+1, r[3]-1),
										 w[0]),
									LERP(lattice(data,n[0], r[0], n[1]+1, r[1]-1, n[2]+1, r[2]-1,0,0),
										 lattice(data,n[0]+1, r[0]-1, n[1]+1, r[1]-1, n[2]+1, r[2]-1, n[3]+1, r[3]-1),
										 w[0]),
									w[1]),
							   w[2]),
						  w[3]);
			break;
	}
	return CLAMP(-0.99999f, 0.99999f, value);
}

typedef float (*TCOD_noise_func_t)( TCOD_noise_t noise, float *f );

static float TCOD_noise_fbm_int(TCOD_noise_t noise,  float *f, float octaves, TCOD_noise_func_t func ) {
	float tf[TCOD_NOISE_MAX_DIMENSIONS];
	perlin_data_t *data=(perlin_data_t *)noise;
	// Initialize locals
	double value = 0;
	int i,j;
	memcpy(tf,f,sizeof(float)*data->ndim);

	// Inner loop of spectral construction, where the fractal is built
	for(i=0; i<(int)octaves; i++)
	{
		value += (double)(func(noise,tf)) * data->exponent[i];
		for (j=0; j < data->ndim; j++) tf[j] *= data->lacunarity;
	}

	// Take care of remainder in octaves
	octaves -= (int)octaves;
	if(octaves > DELTA)
		value += (double)(octaves * func(noise,tf)) * data->exponent[i];
	return CLAMP(-0.99999f, 0.99999f, (float)value);
}

float TCOD_noise_fbm_perlin( TCOD_noise_t noise,  float *f, float octaves )
{
	return TCOD_noise_fbm_int(noise,f,octaves,TCOD_noise_perlin);
/*
	float tf[TCOD_NOISE_MAX_DIMENSIONS];
	perlin_data_t *data=(perlin_data_t *)noise;
	// Initialize locals
	double value = 0;
	int i,j;
	memcpy(tf,f,sizeof(float)*data->ndim);

	// Inner loop of spectral construction, where the fractal is built
	for(i=0; i<(int)octaves; i++)
	{
		value += (double)(TCOD_noise_simplex(noise,tf)) * data->exponent[i];
		for (j=0; j < data->ndim; j++) tf[j] *= data->lacunarity;
	}

	// Take care of remainder in octaves
	octaves -= (int)octaves;
	if(octaves > DELTA)
		value += (double)(octaves * TCOD_noise_simplex(noise,tf)) * data->exponent[i];
	return CLAMP(-0.99999f, 0.99999f, (float)value);
*/
}

float TCOD_noise_fbm_simplex( TCOD_noise_t noise,  float *f, float octaves )
{
	return TCOD_noise_fbm_int(noise,f,octaves,TCOD_noise_simplex);
}

static float TCOD_noise_turbulence_int( TCOD_noise_t noise, float *f, float octaves, TCOD_noise_func_t func )
{
	float tf[TCOD_NOISE_MAX_DIMENSIONS];
	perlin_data_t *data=(perlin_data_t *)noise;
	// Initialize locals
	double value = 0;
	int i,j;
	memcpy(tf,f,sizeof(float)*data->ndim);

	// Inner loop of spectral construction, where the fractal is built
	for(i=0; i<(int)octaves; i++)
	{
		float nval=func(noise,tf);
		value += (double)(ABS(nval)) * data->exponent[i];
		for (j=0; j < data->ndim; j++) tf[j] *= data->lacunarity;
	}

	// Take care of remainder in octaves
	octaves -= (int)octaves;
	if(octaves > DELTA) {
		float nval=func(noise,tf);
		value += (double)(octaves * ABS(nval)) * data->exponent[i];
	}
	return CLAMP(-0.99999f, 0.99999f, (float)value);
}

float TCOD_noise_turbulence_perlin( TCOD_noise_t noise, float *f, float octaves ) {
	return TCOD_noise_turbulence_int(noise,f,octaves,TCOD_noise_perlin);
}

float TCOD_noise_turbulence_simplex( TCOD_noise_t noise, float *f, float octaves ) {
	return TCOD_noise_turbulence_int(noise,f,octaves,TCOD_noise_simplex);
}

// simplex noise, adapted from Ken Perlin's presentation at Siggraph 2001
// and Stefan Gustavson implementation

#define TCOD_NOISE_SIMPLEX_GRADIENT_1D(n,h,x) { \
	float grad; \
	h &= 0xF; \
	grad=1.0f+(h & 7); \
	if ( h & 8 ) grad = -grad; \
	n = grad * x; \
}

#define TCOD_NOISE_SIMPLEX_GRADIENT_2D(n,h,x,y) { \
	float u,v; \
	h &= 0x7; \
	if ( h < 4 ) { \
		u=x; \
		v=2.0f*y; \
	} else { \
		u=y; \
		v=2.0f*x; \
	} \
	n = ((h & 1) ? -u : u) + ((h & 2) ? -v :v ); \
}

#define TCOD_NOISE_SIMPLEX_GRADIENT_3D(n,h,x,y,z) { \
	float u,v; \
	h &= 0xF; \
	u = (h < 8 ? x : y); \
	v = (h < 4 ? y : ( h == 12 || h == 14 ? x : z ) ); \
	n= ((h & 1) ? -u : u ) + ((h & 2) ? -v : v); \
}

#define TCOD_NOISE_SIMPLEX_GRADIENT_4D(n,h,x,y,z,t) { \
	float u,v,w; \
	h &= 0x1F; \
	u = (h < 24 ? x:y); \
	v = (h < 16 ? y:z); \
	w = (h < 8 ? z:t); \
	n= ((h & 1) ? -u : u ) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w);\
}

static float simplex[64][4] = {
	{0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
	{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
	{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
	{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
	{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
	{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
	{2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
	{2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0},

};

float TCOD_noise_simplex(TCOD_noise_t noise, float *f) {
	perlin_data_t *data=(perlin_data_t *)noise;
	switch(data->ndim) {
		case 1 :
		{
			int i0=(int)FLOOR(f[0]*SIMPLEX_SCALE);
			int i1=i0+1;
			float x0 = f[0]*SIMPLEX_SCALE - i0;
			float x1 = x0 - 1.0f;
			float t0 = 1.0f - x0*x0;
			float t1 = 1.0f - x1*x1;
			float n0,n1;
			t0 = t0*t0;
			t1 = t1*t1;
			i0=data->map[i0&0xFF];
			TCOD_NOISE_SIMPLEX_GRADIENT_1D(n0,i0,x0);
			n0*=t0*t0;
			i1=data->map[i1&0xFF];
			TCOD_NOISE_SIMPLEX_GRADIENT_1D(n1,i1,x1);
			n1*=t1*t1;
			return 0.25f * (n0+n1);
		}
		break;
		case 2 :
		{
			#define F2 0.366025403f  // 0.5f * (sqrtf(3.0f)-1.0f);
			#define G2 0.211324865f  // (3.0f - sqrtf(3.0f))/6.0f;

			float s = (f[0]+f[1])*F2*SIMPLEX_SCALE;
			float xs = f[0]*SIMPLEX_SCALE+s;
			float ys = f[1]*SIMPLEX_SCALE+s;
			int i=FLOOR(xs);
			int j=FLOOR(ys);
			float t = (i+j)*G2;
			float xo = i-t;
			float yo = j-t;
			float x0 = f[0]*SIMPLEX_SCALE-xo;
			float y0 = f[1]*SIMPLEX_SCALE-yo;
			int i1,j1,ii = i%256,jj = j%256;
			float n0,n1,n2,x1,y1,x2,y2,t0,t1,t2;
			if ( x0 > y0 ) {
				i1=1;j1=0;
			} else {
				i1=0;j1=1;
			}
			x1 = x0 - i1 + G2;
			y1 = y0 - j1 + G2;
			x2 = x0 - 1.0f + 2.0f * G2;
			y2 = y0 - 1.0f + 2.0f * G2;
			t0 = 0.5f - x0*x0 - y0*y0;
			if ( t0 < 0.0f ) {
				n0 = 0.0f;
			} else {
				int idx = (ii + data->map[jj])&0xFF;
				t0 *= t0;
				idx=data->map[idx];
				TCOD_NOISE_SIMPLEX_GRADIENT_2D(n0,idx,x0,y0);
				n0 *= t0*t0;
			}
			t1 = 0.5f - x1*x1 -y1*y1;
			if ( t1 < 0.0f ) {
				n1 = 0.0f;
			} else {
				int idx = (ii + i1 + data->map[(jj+j1)&0xFF]) & 0xFF;
				t1 *= t1;
				idx=data->map[idx];
				TCOD_NOISE_SIMPLEX_GRADIENT_2D(n1,idx,x1,y1);
				n1 *= t1*t1;
			}
			t2 = 0.5f - x2*x2 -y2*y2;
			if ( t2 < 0.0f ) {
				n2 = 0.0f;
			} else {
				int idx = (ii + 1 + data->map[(jj+1)&0xFF]) & 0xFF;
				t2 *= t2;
				idx=data->map[idx];
				TCOD_NOISE_SIMPLEX_GRADIENT_2D(n2,idx,x2,y2);
				n2 *= t2*t2;
			}
			return 40.0f * (n0+n1+n2);
		}
		break;
		case 3 :
		{
			#define F3 0.333333333f
			#define G3 0.166666667f
			float n0,n1,n2,n3;
			float s =(f[0]+f[1]+f[2])*F3*SIMPLEX_SCALE;
			float xs=f[0]*SIMPLEX_SCALE+s;
			float ys=f[1]*SIMPLEX_SCALE+s;
			float zs=f[2]*SIMPLEX_SCALE+s;
			int i=FLOOR(xs);
			int j=FLOOR(ys);
			int k=FLOOR(zs);
			float t=(float)(i+j+k)*G3;
			float xo = i-t;
			float yo = j-t;
			float zo = k-t;
			float x0 = f[0]*SIMPLEX_SCALE-xo;
			float y0 = f[1]*SIMPLEX_SCALE-yo;
			float z0 = f[2]*SIMPLEX_SCALE-zo;
			int i1,j1,k1,i2,j2,k2,ii,jj,kk;
			float x1,y1,z1,x2,y2,z2,x3,y3,z3,t0,t1,t2,t3;
			if ( x0 >= y0 ) {
				if ( y0 >= z0 ) {
					i1=1;j1=0;k1=0;i2=1;j2=1;k2=0;
				} else if ( x0 >= z0 ) {
					i1=1;j1=0;k1=0;i2=1;j2=0;k2=1;
				} else {
					i1=0;j1=0;k1=1;i2=1;j2=0;k2=1;
				}
			} else {
				if ( y0 < z0 ) {
					i1=0;j1=0;k1=1;i2=0;j2=1;k2=1;
				} else if ( x0 < z0 ) {
					i1=0;j1=1;k1=0;i2=0;j2=1;k2=1;
				} else {
					i1=0;j1=1;k1=0;i2=1;j2=1;k2=0;
				}
			}
			x1 = x0 -i1 + G3;
			y1 = y0 -j1 + G3;
			z1 = z0 -k1 + G3;
			x2 = x0 -i2 + 2.0f*G3;
			y2 = y0 -j2 + 2.0f*G3;
			z2 = z0 -k2 + 2.0f*G3;
			x3 = x0 - 1.0f +3.0f * G3;
			y3 = y0 - 1.0f +3.0f * G3;
			z3 = z0 - 1.0f +3.0f * G3;
			ii = i%256;
			jj = j%256;
			kk = k%256;
			t0 = 0.6f - x0*x0 -y0*y0 -z0*z0;
			if ( t0 < 0.0f ) n0 = 0.0f;
			else {
				int idx = data->map[ (ii + data->map[ (jj + data->map[ kk ]) &0xFF ])& 0xFF ];
				t0 *= t0;
				TCOD_NOISE_SIMPLEX_GRADIENT_3D(n0,idx,x0,y0,z0);
				n0 *= t0*t0;
			}
			t1 = 0.6f - x1*x1 -y1*y1 -z1*z1;
			if ( t1 < 0.0f ) n1 = 0.0f;
			else {
				int idx = data->map[ (ii + i1 +  data->map[ (jj + j1 + data->map[ (kk + k1)& 0xFF ]) &0xFF ])& 0xFF ];
				t1 *= t1;
				TCOD_NOISE_SIMPLEX_GRADIENT_3D(n1,idx,x1,y1,z1);
				n1 *= t1*t1;
			}
			t2 = 0.6f - x2*x2 -y2*y2 -z2*z2;
			if ( t2 < 0.0f ) n2 = 0.0f;
			else {
				int idx = data->map[ (ii + i2 +  data->map[ (jj + j2 + data->map[ (kk + k2)& 0xFF ]) &0xFF ])& 0xFF ];
				t2 *= t2;
				TCOD_NOISE_SIMPLEX_GRADIENT_3D(n2,idx,x2,y2,z2);
				n2 *= t2*t2;
			}
			t3 = 0.6f - x3*x3 -y3*y3 -z3*z3;
			if ( t3 < 0.0f ) n3 = 0.0f;
			else {
				int idx = data->map[ (ii + 1 +  data->map[ (jj + 1 + data->map[ (kk + 1)& 0xFF ]) &0xFF ])& 0xFF ];
				t3 *= t3;
				TCOD_NOISE_SIMPLEX_GRADIENT_3D(n3,idx,x3,y3,z3);
				n3 *= t3*t3;
			}
			return 32.0f * (n0+n1+n2+n3);

		}
		break;
		case 4 :
		{
			#define F4 0.309016994f // (sqrtf(5.0f)-1.0f)/4.0f
			#define G4 0.138196601f // (5.0f - sqrtf(5.0f))/20.0f
			float n0,n1,n2,n3,n4;
			float s = (f[0]+f[1]+f[2]+f[3])*F4 * SIMPLEX_SCALE;
			float xs=f[0]*SIMPLEX_SCALE+s;
			float ys=f[1]*SIMPLEX_SCALE+s;
			float zs=f[2]*SIMPLEX_SCALE+s;
			float ws=f[3]*SIMPLEX_SCALE+s;
			int i=FLOOR(xs);
			int j=FLOOR(ys);
			int k=FLOOR(zs);
			int l=FLOOR(ws);
			float t=(float)(i+j+k+l)*G4;
			float xo = i-t;
			float yo = j-t;
			float zo = k-t;
			float wo = l-t;
			float x0 = f[0]*SIMPLEX_SCALE-xo;
			float y0 = f[1]*SIMPLEX_SCALE-yo;
			float z0 = f[2]*SIMPLEX_SCALE-zo;
			float w0 = f[3]*SIMPLEX_SCALE-wo;
			int c1 = (x0 > y0 ? 32 : 0);
			int c2 = (x0 > z0 ? 16 : 0);
			int c3 = (y0 > z0 ? 8 : 0);
			int c4 = (x0 > w0 ? 4 : 0);
			int c5 = (y0 > w0 ? 2 : 0);
			int c6 = (z0 > w0 ? 1 : 0);
			int c = c1+c2+c3+c4+c5+c6;


			int i1,j1,k1,l1,i2,j2,k2,l2,i3,j3,k3,l3,ii,jj,kk,ll;
			float x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3,x4,y4,z4,w4,t0,t1,t2,t3,t4;
			i1 = simplex[c][0] >= 3 ? 1:0;
			j1 = simplex[c][1] >= 3 ? 1:0;
			k1 = simplex[c][2] >= 3 ? 1:0;
			l1 = simplex[c][3] >= 3 ? 1:0;

			i2 = simplex[c][0] >= 2 ? 1:0;
			j2 = simplex[c][1] >= 2 ? 1:0;
			k2 = simplex[c][2] >= 2 ? 1:0;
			l2 = simplex[c][3] >= 2 ? 1:0;

			i3 = simplex[c][0] >= 1 ? 1:0;
			j3 = simplex[c][1] >= 1 ? 1:0;
			k3 = simplex[c][2] >= 1 ? 1:0;
			l3 = simplex[c][3] >= 1 ? 1:0;

			x1 = x0 -i1 + G4;
			y1 = y0 -j1 + G4;
			z1 = z0 -k1 + G4;
			w1 = w0 -l1 + G4;
			x2 = x0 -i2 + 2.0f*G4;
			y2 = y0 -j2 + 2.0f*G4;
			z2 = z0 -k2 + 2.0f*G4;
			w2 = w0 -l2 + 2.0f*G4;
			x3 = x0 -i3 + 3.0f*G4;
			y3 = y0 -j3 + 3.0f*G4;
			z3 = z0 -k3 + 3.0f*G4;
			w3 = w0 -l3 + 3.0f*G4;
			x4 = x0 - 1.0f +4.0f * G4;
			y4 = y0 - 1.0f +4.0f * G4;
			z4 = z0 - 1.0f +4.0f * G4;
			w4 = w0 - 1.0f +4.0f * G4;

			ii = i%256;
			jj = j%256;
			kk = k%256;
			ll = l%256;

			t0 = 0.6f - x0*x0 -y0*y0 -z0*z0 -w0*w0;
			if ( t0 < 0.0f ) n0 = 0.0f;
			else {
				int idx = data->map[ (ii + data->map[ (jj + data->map[ (kk + data->map[ ll ] ) &0xFF]) &0xFF ])& 0xFF ];
				t0 *= t0;
				TCOD_NOISE_SIMPLEX_GRADIENT_4D(n0,idx,x0,y0,z0,w0);
				n0 *= t0*t0;
			}
			t1 = 0.6f - x1*x1 -y1*y1 -z1*z1 -w1*w1;
			if ( t1 < 0.0f ) n1 = 0.0f;
			else {
				int idx = data->map[ (ii + i1 +  data->map[ (jj + j1 + data->map[ (kk + k1 + data->map[ (ll+l1)&0xFF])& 0xFF ]) &0xFF ])& 0xFF ];
				t1 *= t1;
				TCOD_NOISE_SIMPLEX_GRADIENT_4D(n1,idx,x1,y1,z1,w1);
				n1 *= t1*t1;
			}
			t2 = 0.6f - x2*x2 -y2*y2 -z2*z2 -w2*w2;
			if ( t2 < 0.0f ) n2 = 0.0f;
			else {
				int idx = data->map[ (ii + i2 +  data->map[ (jj + j2 + data->map[ (kk + k2 + data->map[(ll+l2)&0xFF])& 0xFF ]) &0xFF ])& 0xFF ];
				t2 *= t2;
				TCOD_NOISE_SIMPLEX_GRADIENT_4D(n2,idx,x2,y2,z2,w2);
				n2 *= t2*t2;
			}
			t3 = 0.6f - x3*x3 -y3*y3 -z3*z3 -w3*w3;
			if ( t3 < 0.0f ) n3 = 0.0f;
			else {
				int idx = data->map[ (ii + i3 +  data->map[ (jj + j3 + data->map[ (kk + k3 + data->map[(ll+l3)&0xFF])& 0xFF ]) &0xFF ])& 0xFF ];
				t3 *= t3;
				TCOD_NOISE_SIMPLEX_GRADIENT_4D(n3,idx,x3,y3,z3,w3);
				n3 *= t3*t3;
			}
			t4 = 0.6f - x4*x4 -y4*y4 -z4*z4 -w4*w4;
			if ( t4 < 0.0f ) n4 = 0.0f;
			else {
				int idx = data->map[ (ii + 1 +  data->map[ (jj + 1 + data->map[ (kk + 1 + data->map[(ll+1)&0xFF])& 0xFF ]) &0xFF ])& 0xFF ];
				t4 *= t4;
				TCOD_NOISE_SIMPLEX_GRADIENT_4D(n4,idx,x4,y4,z4,w4);
				n4 *= t4*t4;
			}
			return 27.0f * (n0+n1+n2+n3+n4);

		}
		break;
	}
	return 0.0f;
}

// wavelet noise, adapted from Robert L. Cook and Tony Derose 'Wavelet noise' paper

static int absmod(int x, int n) {
	int m=x%n;
	return m < 0 ? m+n : m;
}

static void TCOD_noise_wavelet_downsample(float *from, float *to, int stride) {
	static float acoeffs[2*WAVELET_ARAD]= {
		0.000334f, -0.001528f, 0.000410f, 0.003545f, -0.000938f, -0.008233f, 0.002172f, 0.019120f,
		-0.005040f,-0.044412f, 0.011655f, 0.103311f, -0.025936f, -0.243780f, 0.033979f, 0.655340f,
		 0.655340f, 0.033979f,-0.243780f,-0.025936f,  0.103311f,  0.011655f,-0.044412f,-0.005040f,
		0.019120f,  0.002172f,-0.008233f,-0.000938f,  0.003546f,  0.000410f,-0.001528f, 0.000334f,
	};
	static float *a = &acoeffs[WAVELET_ARAD];
	int i;
	for (i=0; i < WAVELET_TILE_SIZE/2; i++) {
		int k;
		to[i*stride]=0;
		for (k=2*i-WAVELET_ARAD; k <2*i+WAVELET_ARAD; k++) {
			to[i*stride] += a[k-2*i]* from[ absmod(k,WAVELET_TILE_SIZE) * stride ];
		}
	}
}

static void TCOD_noise_wavelet_upsample(float *from, float *to, int stride) {
	static float pcoeffs[4]= { 0.25f, 0.75f, 0.75f, 0.25f };
	static float *p = &pcoeffs[2];
	int i;
	for (i=0; i < WAVELET_TILE_SIZE; i++) {
		int k;
		to[i*stride]=0;
		for (k=i/2; k <i/2+1; k++) {
			to[i*stride] += p[i-2*k]* from[ absmod(k,WAVELET_TILE_SIZE/2) * stride ];
		}
	}
}

static void TCOD_noise_wavelet_init(TCOD_noise_t pnoise) {
	perlin_data_t *data=(perlin_data_t *)pnoise;
	int ix,iy,iz,i,sz=WAVELET_TILE_SIZE*WAVELET_TILE_SIZE*WAVELET_TILE_SIZE*sizeof(float);
	float *temp1=(float *)malloc(sz);
	float *temp2=(float *)malloc(sz);
	float *noise=(float *)malloc(sz);
	int offset;
	for (i=0; i < WAVELET_TILE_SIZE*WAVELET_TILE_SIZE*WAVELET_TILE_SIZE; i++ ) {
		noise[i]=genrand_real(-1.0f,1.0f);
	}
	for (iy=0; iy < WAVELET_TILE_SIZE; iy++ ) {
		for (iz=0; iz < WAVELET_TILE_SIZE; iz++ ) {
			i = iy * WAVELET_TILE_SIZE + iz * WAVELET_TILE_SIZE * WAVELET_TILE_SIZE;
			TCOD_noise_wavelet_downsample(&noise[i], &temp1[i], 1);
			TCOD_noise_wavelet_upsample(&temp1[i], &temp2[i], 1);
		}
	}
	for (ix=0; ix < WAVELET_TILE_SIZE; ix++ ) {
		for (iz=0; iz < WAVELET_TILE_SIZE; iz++ ) {
			i = ix + iz * WAVELET_TILE_SIZE * WAVELET_TILE_SIZE;
			TCOD_noise_wavelet_downsample(&temp2[i], &temp1[i], WAVELET_TILE_SIZE);
			TCOD_noise_wavelet_upsample(&temp1[i], &temp2[i], WAVELET_TILE_SIZE);
		}
	}
	for (ix=0; ix < WAVELET_TILE_SIZE; ix++ ) {
		for (iy=0; iy < WAVELET_TILE_SIZE; iy++ ) {
			i = ix + iy * WAVELET_TILE_SIZE;
			TCOD_noise_wavelet_downsample(&temp2[i], &temp1[i], WAVELET_TILE_SIZE * WAVELET_TILE_SIZE);
			TCOD_noise_wavelet_upsample(&temp1[i], &temp2[i], WAVELET_TILE_SIZE * WAVELET_TILE_SIZE);
		}
	}
	for (i=0; i < WAVELET_TILE_SIZE*WAVELET_TILE_SIZE*WAVELET_TILE_SIZE; i++ ) {
		noise[i] -= temp2[i];
	}
	offset = WAVELET_TILE_SIZE/2;
	if ( (offset & 1) == 0 ) offset++;
	for (i=0,ix=0; ix < WAVELET_TILE_SIZE; ix++ ) {
		for (iy=0; iy < WAVELET_TILE_SIZE; iy++ ) {
			for (iz=0; iz < WAVELET_TILE_SIZE; iz++ ) {
				temp1[i++]=noise[ absmod(ix+offset,WAVELET_TILE_SIZE)
					+ absmod(iy+offset,WAVELET_TILE_SIZE)*WAVELET_TILE_SIZE
					+ absmod(iz+offset,WAVELET_TILE_SIZE)*WAVELET_TILE_SIZE*WAVELET_TILE_SIZE
					];
			}
		}
	}
	for (i=0; i < WAVELET_TILE_SIZE*WAVELET_TILE_SIZE*WAVELET_TILE_SIZE; i++ ) {
		noise[i] += temp1[i];
	}
	data->waveletTileData=noise;
	free(temp1);
	free(temp2);
}

float TCOD_noise_wavelet (TCOD_noise_t noise, float *f) {
	perlin_data_t *data=(perlin_data_t *)noise;
	float pf[3];
	int i;
	int p[3],c[3],mid[3],n=WAVELET_TILE_SIZE;
	float w[3][3],t,result=0.0f;
	if ( data->ndim > 3 ) return 0.0f; // not supported
	if (! data->waveletTileData ) TCOD_noise_wavelet_init(noise);
	for (i=0; i < data->ndim; i++ ) pf[i]=f[i]*WAVELET_SCALE;
	for (i=data->ndim; i < 3; i++ ) pf[i]=0.0f;
	for (i=0; i < 3; i++ ) {
		mid[i]=(int)ceilf(pf[i]-0.5f);
		t=mid[i] - (pf[i]-0.5f);
		w[i][0]=t*t*0.5f;
		w[i][2]=(1.0f-t)*(1.0f-t)*0.5f;
		w[i][1]=1.0f - w[i][0]-w[i][2];
	}
	for (p[2]=-1; p[2]<=1; p[2]++) {
		for (p[1]=-1; p[1]<=1; p[1]++) {
			for (p[0]=-1; p[0]<=1; p[0]++) {
				float weight=1.0f;
				for (i=0;i<3;i++) {
					c[i]=absmod(mid[i]+p[i],n);
					weight *= w[i][p[i]+1];
				}
				result += weight * data->waveletTileData[ c[2]*n*n + c[1]*n + c[0] ];
			}
		}
	}
	return CLAMP(-1.0f,1.0f,result);
}

float TCOD_noise_fbm_wavelet(TCOD_noise_t noise, float *f, float octaves) {
	return TCOD_noise_fbm_int(noise,f,octaves,TCOD_noise_wavelet);
}

float TCOD_noise_turbulence_wavelet(TCOD_noise_t noise, float *f, float octaves) {
	return TCOD_noise_turbulence_int(noise,f,octaves,TCOD_noise_wavelet);
}


void TCOD_noise_delete(TCOD_noise_t noise) {
	free((perlin_data_t *)noise);
}

#endif