dmnd_square.c
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// some content:
// Written by: Paul E. Martz
// Copyright 1997 by Paul E. Martz, all right reserved
// Non-commercial use by individuals is permitted.
// diamond square algorithm itself is public domain
/*
Lua glue code itself is:
TE4 - T-Engine 4
Copyright (C) 2009 - 2018 Nicolas Casalini
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Nicolas Casalini "DarkGod"
darkgod@te4.org
*/
#include "display.h"
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
#include "auxiliar.h"
#include "types.h"
#include "SFMT.h"
#include <math.h>
/*
* fractRand is a useful interface to randnum.
*/
static float fractRand(float v)
{
float r = genrand_real(-v, v);
return r;
}
/*
* avgEndpoints - Given the i location and a stride to the data
* values, return the average those data values. "i" can be thought of
* as the data value in the center of two line endpoints. We use
* "stride" to get the values of the endpoints. Averaging them yields
* the midpoint of the line.
*
* Called by fill1DFractArray.
*/
static float avgEndpoints (int i, int stride, float *fa)
{
return ((float) (fa[i-stride] +
fa[i+stride]) * .5f);
}
/*
* avgDiamondVals - Given the i,j location as the center of a diamond,
* average the data values at the four corners of the diamond and
* return it. "Stride" represents the distance from the diamond center
* to a diamond corner.
*
* Called by fill2DFractArray.
*/
static float avgDiamondVals (int i, int j, int stride,
int size, int subSize, float *fa)
{
/* In this diagram, our input stride is 1, the i,j location is
indicated by "X", and the four value we want to average are
"*"s:
. * .
* X *
. * .
*/
/* In order to support tiled surfaces which meet seamless at the
edges (that is, they "wrap"), We need to be careful how we
calculate averages when the i,j diamond center lies on an edge
of the array. The first four 'if' clauses handle these
cases. The final 'else' clause handles the general case (in
which i,j is not on an edge).
*/
if (i == 0)
return ((float) (fa[(i*size) + j-stride] +
fa[(i*size) + j+stride] +
fa[((subSize-stride)*size) + j] +
fa[((i+stride)*size) + j]) * .25f);
else if (i == size-1)
return ((float) (fa[(i*size) + j-stride] +
fa[(i*size) + j+stride] +
fa[((i-stride)*size) + j] +
fa[((0+stride)*size) + j]) * .25f);
else if (j == 0)
return ((float) (fa[((i-stride)*size) + j] +
fa[((i+stride)*size) + j] +
fa[(i*size) + j+stride] +
fa[(i*size) + subSize-stride]) * .25f);
else if (j == size-1)
return ((float) (fa[((i-stride)*size) + j] +
fa[((i+stride)*size) + j] +
fa[(i*size) + j-stride] +
fa[(i*size) + 0+stride]) * .25f);
else
return ((float) (fa[((i-stride)*size) + j] +
fa[((i+stride)*size) + j] +
fa[(i*size) + j-stride] +
fa[(i*size) + j+stride]) * .25f);
}
/*
* avgSquareVals - Given the i,j location as the center of a square,
* average the data values at the four corners of the square and return
* it. "Stride" represents half the length of one side of the square.
*
* Called by fill2DFractArray.
*/
static float avgSquareVals (int i, int j, int stride, int size, float *fa)
{
/* In this diagram, our input stride is 1, the i,j location is
indicated by "*", and the four value we want to average are
"X"s:
X . X
. * .
X . X
*/
return ((float) (fa[((i-stride)*size) + j-stride] +
fa[((i-stride)*size) + j+stride] +
fa[((i+stride)*size) + j-stride] +
fa[((i+stride)*size) + j+stride]) * .25f);
}
// ifdef DEBUG
/*
* dump1DFractArray - Use for debugging.
*/
void dump1DFractArray (float *fa, int size)
{
int i;
for (i=0; i<size; i++)
printf ("(%.2f) ", fa[i]);
printf ("\n");
}
/*
* dump2DFractArray - Use for debugging.
*/
void dump2DFractArray (float *fa, int size)
{
int i, j;
for (i=0; i<size; i++) {
j=0;
// printf ("[%d,%d]: ", i, j);
for (; j<size; j++) {
printf ("%.2f ",
fa[(i*size)+j]);
}
printf ("\n");
}
}
// endif
/*
* powerOf2 - Returns 1 if size is a power of 2. Returns 0 if size is
* not a power of 2, or is zero.
*/
static int powerOf2 (int size)
{
int i, bitcount = 0;
/* Note this code assumes that (sizeof(int)*8) will yield the
number of bits in an int. Should be portable to most
platforms. */
for (i=0; i<sizeof(int)*8; i++)
if (size & (1<<i))
bitcount++;
if (bitcount == 1)
/* One bit. Must be a power of 2. */
return (1);
else
/* either size==0, or size not a power of 2. Sorry, Charlie. */
return (0);
}
/*
* fill1DFractArray - Tessalate an array of values into an
* approximation of fractal Brownian motion.
*/
void fill1DFractArray (float *fa, int size,
float heightScale, float h)
{
int i;
int stride;
int subSize;
float ratio, scale;
if (!powerOf2(size) || (size==1)) {
/* We can't tesselate the array if it is not a power of 2. */
#ifdef DEBUG
printf ("Error: fill1DFractArray: size %d is not a power of 2.\n");
#endif /* DEBUG */
return;
}
/* subSize is the dimension of the array in terms of connected line
segments, while size is the dimension in terms of number of
vertices. */
subSize = size;
size++;
#ifdef DEBUG
printf ("initialized\n");
dump1DFractArray (fa, size);
#endif
/* Set up our roughness constants.
Random numbers are always generated in the range 0.0 to 1.0.
'scale' is multiplied by the randum number.
'ratio' is multiplied by 'scale' after each iteration
to effectively reduce the randum number range.
*/
ratio = (float) pow (2.,-h);
scale = heightScale * ratio;
/* Seed the endpoints of the array. To enable seamless wrapping,
the endpoints need to be the same point. */
stride = subSize / 2;
fa[0] =
fa[subSize] = 0.f;
#ifdef DEBUG
printf ("seeded\n");
dump1DFractArray (fa, size);
#endif
while (stride) {
for (i=stride; i<subSize; i+=stride) {
fa[i] = scale * fractRand (.5f) +
avgEndpoints (i, stride, fa);
/* reduce random number range */
scale *= ratio;
i+=stride;
}
stride >>= 1;
}
#ifdef DEBUG
printf ("complete\n");
dump1DFractArray (fa, size);
#endif
}
/*
* fill2DFractArray - Use the diamond-square algorithm to tessalate a
* grid of float values into a fractal height map.
*/
void fill2DFractArray (float *fa, int size,
float heightScale, float h)
{
int i, j;
int stride;
int oddline;
int subSize;
float ratio, scale;
if (!powerOf2(size) || (size==1)) {
/* We can't tesselate the array if it is not a power of 2. */
#ifdef DEBUG
printf ("Error: fill2DFractArray: size %d is not a power of 2.\n");
#endif /* DEBUG */
return;
}
/* subSize is the dimension of the array in terms of connected line
segments, while size is the dimension in terms of number of
vertices. */
subSize = size;
size++;
#ifdef DEBUG
printf ("initialized\n");
dump2DFractArray (fa, size);
#endif
/* Set up our roughness constants.
Random numbers are always generated in the range 0.0 to 1.0.
'scale' is multiplied by the randum number.
'ratio' is multiplied by 'scale' after each iteration
to effectively reduce the randum number range.
*/
ratio = (float) pow (2.,-h);
scale = heightScale * ratio;
/* Seed the first four values. For example, in a 4x4 array, we
would initialize the data points indicated by '*':
* . . . *
. . . . .
. . . . .
. . . . .
* . . . *
In terms of the "diamond-square" algorithm, this gives us
"squares".
We want the four corners of the array to have the same
point. This will allow us to tile the arrays next to each other
such that they join seemlessly. */
stride = subSize / 2;
fa[(0*size)+0] =
fa[(subSize*size)+0] =
fa[(subSize*size)+subSize] =
fa[(0*size)+subSize] = 0.f;
#ifdef DEBUG
printf ("seeded\n");
dump2DFractArray (fa, size);
#endif
/* Now we add ever-increasing detail based on the "diamond" seeded
values. We loop over stride, which gets cut in half at the
bottom of the loop. Since it's an int, eventually division by 2
will produce a zero result, terminating the loop. */
while (stride) {
/* Take the existing "square" data and produce "diamond"
data. On the first pass through with a 4x4 matrix, the
existing data is shown as "X"s, and we need to generate the
"*" now:
X . . . X
. . . . .
. . * . .
. . . . .
X . . . X
It doesn't look like diamonds. What it actually is, for the
first pass, is the corners of four diamonds meeting at the
center of the array. */
for (i=stride; i<subSize; i+=stride) {
for (j=stride; j<subSize; j+=stride) {
fa[(i * size) + j] =
scale * fractRand (.5f) +
avgSquareVals (i, j, stride, size, fa);
j += stride;
}
i += stride;
}
#ifdef DEBUG
printf ("Diamonds:\n");
dump2DFractArray (fa, size);
#endif
/* Take the existing "diamond" data and make it into
"squares". Back to our 4X4 example: The first time we
encounter this code, the existing values are represented by
"X"s, and the values we want to generate here are "*"s:
X . * . X
. . . . .
* . X . *
. . . . .
X . * . X
i and j represent our (x,y) position in the array. The
first value we want to generate is at (i=2,j=0), and we use
"oddline" and "stride" to increment j to the desired value.
*/
oddline = 0;
for (i=0; i<subSize; i+=stride) {
oddline = (oddline == 0);
for (j=0; j<subSize; j+=stride) {
if ((oddline) && !j) j+=stride;
/* i and j are setup. Call avgDiamondVals with the
current position. It will return the average of the
surrounding diamond data points. */
fa[(i * size) + j] =
scale * fractRand (.5f) +
avgDiamondVals (i, j, stride, size, subSize, fa);
/* To wrap edges seamlessly, copy edge values around
to other side of array */
if (i==0)
fa[(subSize*size) + j] =
fa[(i * size) + j];
if (j==0)
fa[(i*size) + subSize] =
fa[(i * size) + j];
j+=stride;
}
}
#ifdef DEBUG
printf ("Squares:\n");
dump2DFractArray (fa, size);
#endif
/* reduce random number range. */
scale *= ratio;
stride >>= 1;
}
#ifdef DEBUG
printf ("complete\n");
dump2DFractArray (fa, size);
#endif
}
/*
* alloc1DFractArray - Allocate float-sized data points for a 1D strip
* containing size line segments.
*/
float *alloc1DFractArray (int size)
{
/* Increment size (see comment in alloc2DFractArray, below, for an
explanation). */
size++;
return ((float *) malloc (sizeof(float) * size));
}
/*
* alloc2DFractArray - Allocate float-sized data points for a sizeXsize
* mesh.
*/
float *alloc2DFractArray (int size)
{
/* For a sizeXsize array, we need (size+1)X(size+1) space. For
example, a 2x2 mesh needs 3x3=9 data points:
* * *
* * *
* * *
To account for this, increment 'size'. */
size++;
return ((float *) malloc (sizeof(float) * size * size));
}
/*
* freeFractArray - Takes a pointer to float and frees it. Can be used
* to free data that was allocated by either alloc1DFractArray or
* alloc2DFractArray.
*/
void freeFractArray (float *fa)
{
free (fa);
}
static int dmnd_2d(lua_State *L)
{
int size = luaL_checknumber(L, 1);
float heightScale = luaL_checknumber(L, 2);
float h = luaL_checknumber(L, 3);
float *fa = alloc2DFractArray(size);
fill2DFractArray(fa, size, heightScale, h);
int j, i;
lua_createtable(L, size, 0);
for (j = 0; j < size; j++)
{
lua_createtable(L, size, 0);
for (i = 0; i < size; i++)
{
lua_pushnumber(L, fa[j * size + i]);
lua_rawseti(L, -2, i + 1);
}
lua_rawseti(L, -2, j + 1);
}
freeFractArray(fa);
return 1;
}
static int dmnd_1d(lua_State *L)
{
int size = luaL_checknumber(L, 1);
float heightScale = luaL_checknumber(L, 2);
float h = luaL_checknumber(L, 3);
float *fa = alloc1DFractArray(size);
fill1DFractArray(fa, size, heightScale, h);
int i;
lua_createtable(L, size, 0);
for (i = 0; i < size; i++)
{
lua_pushnumber(L, fa[i]);
lua_rawseti(L, -2, i + 1);
}
freeFractArray(fa);
return 1;
}
static const struct luaL_Reg dmndlib[] =
{
{"get1D", dmnd_1d},
{"get2D", dmnd_2d},
{NULL, NULL},
};
int luaopen_diamond_square(lua_State *L)
{
luaL_openlib(L, "core.diamond_square", dmndlib, 0);
lua_pop(L, 1);
return 1;
}